精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

【答案】(1)(-∞,3].(2)-3ln 3

【解析】

试题(1)由题意得导函数在[1,+∞)上非正,利用参变分离将不等式恒成立转化为对应函数最值: 最小值,根据基本不等式求最小值,即得实数a的取值范围;(2)根据极值定义可得f′(3)=0,解得a,再利用导数求函数最值.

试题解析:解:f′(x)=2a-3x.

(1)由题意知f′(x)≤0对x∈[1,+∞)恒成立,

≤0,

x>0,所以-3x2+2ax-3≤0恒成立,

即3≥2a恒成立,6≥2a

所以a≤3.∴a的取值范围为(-∞,3].

(2)依题意f′(3)=0,

=0,

解得a=5,

此时f′(x)=

=-

易知x∈[1,3]时f′(x)≥0,原函数递增,x∈[3,5]时,f′(x)≤0,原函数递减,

所以最大值为f(3)=-3ln 3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,有下面结论:

①AC∥平面CB1D1

②AC1平面CB1D1

③AC1与底面ABCD所成角的正切值是

④AD1与BD为异面直线.其中正确的结论的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上是单调增函数的是(
A.
B.y=|x|﹣1
C.y=lgx
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,等边三角形所在平面垂直于矩形所在平面,又知//.

(1)若的中点为在线段上,//平面,求

(2)若平面与平面所成二面角的余弦值为,求直线与平面所成角的正弦值;

(3)若中点为,求在平面上的正投影。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函数f(x)=1﹣
(1)若x∈[0, ],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=cos2x+asinx在区间( )是减函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案