【题目】已知函数f(x)=2ax-x2-3ln x,其中a∈R,为常数.
(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.
【答案】(1)(-∞,3].(2)-3ln 3
【解析】
试题(1)由题意得导函数在[1,+∞)上非正,利用参变分离将不等式恒成立转化为对应函数最值: 最小值,根据基本不等式求最小值,即得实数a的取值范围;(2)根据极值定义可得f′(3)=0,解得a,再利用导数求函数最值.
试题解析:解:f′(x)=2a-3x-=.
(1)由题意知f′(x)≤0对x∈[1,+∞)恒成立,
即≤0,
又x>0,所以-3x2+2ax-3≤0恒成立,
即3≥2a恒成立,6≥2a,
所以a≤3.∴a的取值范围为(-∞,3].
(2)依题意f′(3)=0,
即=0,
解得a=5,
此时f′(x)=
=-,
易知x∈[1,3]时f′(x)≥0,原函数递增,x∈[3,5]时,f′(x)≤0,原函数递减,
所以最大值为f(3)=-3ln 3.
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-A1B1C1D1中,有下面结论:
①AC∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1与底面ABCD所成角的正切值是;
④AD1与BD为异面直线.其中正确的结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图几何体中,等边三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中点为,在线段上,//平面,求;
(2)若平面与平面所成二面角的余弦值为,求直线与平面所成角的正弦值;
(3)若中点为,,求在平面上的正投影。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函数f(x)=1﹣ .
(1)若x∈[0, ],求函数f(x)的值域;
(2)当x∈[0,π]时,求f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分条件,求实数m的取值范围;
(2)若是 成立的充分不必要条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.
(1)求的方程;
(2)若动点在直线上,过作直线交椭圆于两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y=2x2 , 直线l:y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线C于点N.
(1)证明:抛物线C在点N处的切线与AB平行;
(2)是否存在实数k使以AB为直径的圆M经过点N,若存在,求k的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com