ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf(x)¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù ·½³Ìf(x)-x=0ÓÐʵÊý¸ù£»¢Ú º¯Êýf(x)µÄµ¼Êý(x)Âú×ã0£¼(x)£¼1¡±.

(¢ñ)ÅжϺ¯Êýf(x)=ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»

(¢ò )¼¯ºÏMÖеÄÔªËØf(x)¾ßÓÐÏÂÃæµÄÐÔÖÊ£º¡°Èôf(x)µÄ¶¨ÒåÓòΪD£¬Ôò¶ÔÓÚÈÎÒâ[m£¬n]D£¬¶¼´æÔÚx0¡Ê [m£¬n]£¬Ê¹µÃµÈʽf(n)-f(m)=(n-m)(x0)³ÉÁ¢¡±£¬ÊÔÓÃÕâÒ»ÐÔÖÊÖ¤Ã÷£º·½³Ìf(x)-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£»

(¢ó)Éèx1ÊÇ·½³Ìf(x)-x=0µÄʵÊý¸ù£¬ÇóÖ¤£º¶ÔÓÚf(x)¶¨ÒåÓòÖÐÈÎÒâµÄx2£¬x3,µ±£¬ÇÒʱ£¬.

½â£º(¢ñ)ÒòΪf(x)=cosx£¬

ËùÒÔ(x)¡Ê[,]£¬Âú×ãÌõ¼þ0£¼(x)£¼1£¬

ÓÖÒòΪµ±x=0ʱ£¬f(0)=0£¬ËùÒÔ·½³Ìf(x)-x=0ÓÐʵÊý¸ù0.

ËùÒÔº¯Êýf(x)=ÊǼ¯ºÏMÖеÄÔªËØ.

(¢ò)¼ÙÉè·½³Ìf(x)-x=0´æÔÚÁ½¸öʵÊý¸ù¦Á,¦Â(¦Á¡Ù¦Â)£¬

Ôòf(¦Á)-¦Á=0£¬f(¦Â)-¦Â=0£¬

²»·ÁÉè¦Á£¼¦Â£¬¸ù¾ÝÌâÒâ´æÔÚʵÊýc¡Ê(¦Á,¦Â)£¬

ʹµÃµÈʽf(¦Â)-f(¦Á)=(¦Â-¦Á)(c)³ÉÁ¢£¬

ÒòΪf(¦Á)=¦Á£¬f(¦Â)=¦Â£¬ÇÒ¦Á¡Ù¦Â,ËùÒÔ(c)=1£¬

ÓëÒÑÖª0£¼(x)£¼1ì¶Ü£¬ËùÒÔ·½³Ìf(x)-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£» 

(¢ó)²»·ÁÉèx2£¼x3£¬ÒòΪ(x)£¾0£¬

ËùÒÔf(x)ΪÔöº¯Êý£¬ËùÒÔf(x2)£¼f(x3)£¬

ÓÖÒòΪ(x)-1£¼0£¬ËùÒÔº¯Êýf(x)-xΪ¼õº¯Êý£¬

ËùÒÔf(x2)-x2£¾f(x3)-x3£¬

ËùÒÔ0£¼f(x3)-f(x2)£¼x3-x2£¬¼´|f(x3)-f(x2)|£¼|x3-x2|£¬ 

ËùÒÔ|f(x3)-f(x2)|£¼|x3-x2|=|x3-x1-(x2-x1)|¡Ü|x3-x1|+|x2-x1|£¼2.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1¡±£®
£¨¢ñ£©ÅжϺ¯Êýf(x)=
x
2
+
sinx
4
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©¼¯ºÏMÖеÄÔªËØf£¨x£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£ºÈôf£¨x£©µÄ¶¨ÒåÓòΪD£¬Ôò¶ÔÓÚÈÎÒâ[m£¬n]⊆D£¬¶¼´æÔÚx0¡Ê[m£¬n]£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f'£¨x0£©³ÉÁ¢¡±£¬ÊÔÓÃÕâÒ»ÐÔÖÊÖ¤Ã÷£º·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£»
£¨¢ó£©Éèx1ÊÇ·½³Ìf£¨x£©-x=0µÄʵÊý¸ù£¬ÇóÖ¤£º¶ÔÓÚf£¨x£©¶¨ÒåÓòÖÐÈÎÒâµÄx2¡¢x3£¬µ±|x2-x1|£¼1£¬ÇÒ|x3-x1|£¼1ʱ£¬|f£¨x3£©-f£¨x2£©|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã
0£¼f¡ä£¨x£©£¼1¡±
£¨I£©Ö¤Ã÷£ºº¯Êýf£¨x£©=
3x
4
+
x3
3
£¨0¡Üx£¼
1
2
£©ÊǼ¯ºÏMÖеÄÔªËØ£»
£¨II£©Ö¤Ã÷£ºº¯Êýf£¨x£©=
3x
4
+
x3
3
£¨0¡Üx£¼
1
2
£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£º¶ÔÓÚÈÎÒâ[m£¬n]⊆[0£¬
1
2
£©£¬¶¼´æÔÚxo¡Ê£¨m£¬n£©£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f¡ä£¨xo£©³ÉÁ¢£®
£¨III£©Èô¼¯ºÏMÖеÄÔªËØf£¨x£©¾ßÓÐÏÂÃæµÄÐÔÖÊ£ºÈôf£¨x£©µÄ¶¨ÒåÓòΪD£¬Ôò¶ÔÓÚÈÎÒâ[m£¬n]⊆D£¬¶¼´æÔÚxo¡Ê£¨m£¬n£©£¬Ê¹µÃµÈʽf£¨n£©-f£¨m£©=£¨n-m£©f¡ä£¨xo£©³ÉÁ¢£®ÊÔÓÃÕâÒ»ÐÔÖÊÖ¤Ã÷£º¶Ô¼¯ºÏMÖеÄÈÎÒ»ÔªËØf£¨x£©£¬·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¡°¢Ù·½³Ìf£¨x£©-x=0ÓÐʵÊý¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®¡±
£¨¢ñ£©ÅжϺ¯Êýf(x)=
x
2
+
sinx
4
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Áîg£¨x£©=f£¨x£©-x£¬ÅжÏg£¨x£©µÄµ¥µ÷ÐÔ£¨f£¨x£©¡ÊM£©£»
£¨¢ó£©Éèx1£¼x2£¬Ö¤Ã÷£º0£¼f£¨x2£©-f£¨x1£©£¼x2-x1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º£¨1£©·½³Ìf£¨x£©-x=0ÓÐʵÊý½â£»£¨2£©º¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®¸ø³öÈçϺ¯Êý£º
¢Ùf(x)=
x
2
+
sinx
4
£»
¢Úf£¨x£©=x+tanx£¬x¡Ê(-
¦Ð
2
£¬
¦Ð
2
)
£»
¢Ûf£¨x£©=log3x+1£¬x¡Ê[1£¬+¡Þ£©£®
ÆäÖÐÊǼ¯ºÏMÖеÄÔªËصÄÓÐ
¢Ù¢Û
¢Ù¢Û
£®£¨Ö»ÐèÌîдº¯ÊýµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•½­Î÷Ä£Ä⣩ÉèMÊÇÓÉÂú×ãÏÂÁÐÌõ¼þµÄº¯Êýf£¨x£©¹¹³ÉµÄ¼¯ºÏ£º¢Ù·½³Ìf£¨x£©-x=0ÓÐʵ¸ù£»¢Úº¯Êýf£¨x£©µÄµ¼Êýf¡ä£¨x£©Âú×ã0£¼f¡ä£¨x£©£¼1£®
£¨1£©Èôº¯Êýf£¨x£©Îª¼¯ºÏMÖеÄÈÎÒâÒ»¸öÔªËØ£¬Ö¤Ã÷£º·½³Ìf£¨x£©-x=0Ö»ÓÐÒ»¸öʵ¸ù£»
£¨2£©ÅжϺ¯Êýg£¨x£©=
x
2
-
lnx
2
+3(x£¾1)
ÊÇ·ñÊǼ¯ºÏMÖеÄÔªËØ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©É躯Êýf£¨x£©Îª¼¯ºÏMÖеÄÈÎÒâÒ»¸öÔªËØ£¬¶ÔÓÚ¶¨ÒåÓòÖÐÈÎÒâ¦Á£¬¦Â£¬Ö¤Ã÷|f£¨¦Á£©-f£¨¦Â£©|¡Ü|¦Á-¦Â|

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸