【题目】在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为的椭圆E的左顶点为A,点A到右准线的距离为6.
(1)求椭圆E的标准方程;
(2)过点A且斜率为的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆E于M点,求M点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求椭圆的标准方程;
(2)若,为椭圆上不同的两点,且以为直径的圆过坐标原点.是否存在定圆与动直线相切?若存在,求出该圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,l的极坐标方程为,C的参数方程为(为参数,).写出l和C的普通方程;
(2)在直角坐标系xOy中,曲线的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,记曲线和在第一象限内的交点为A.写出曲线的极坐标方程和线段OA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:
未发病 | 发病 | 总计 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
总计 | 50 | 50 | 100 |
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.
(1)求列联表中的数据,,,的值;
(2)能够有多大把握认为疫苗有效?
(参考公式,)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是边长为的正方形,为的中点,以为折痕把折起,使点到达点的位置,且二面角为直二面角,连结.
(1)记平面与平面相较于,在图中作出,并说明画法;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业以下简称外卖甲,外卖乙的经营情况进行了调查,调查结果如表:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
外卖甲日接单x(百单 | 5 | 2 | 9 | 8 | 11 |
外卖乙日接单y(百单 | 2.2 | 2.3 | 10 | 5 | 15 |
(Ⅰ)据统计表明,y与x之间具有线性相关关系.经计算求得y与x之间的回归方程为,假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围;(x值精确到0.01)
(Ⅱ)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com