精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-3)(x0+1)2,则该函数的单调递减区间为(  )
A.[-1,+∞)B.(-∞,3]C.(-∞,-1]D.[3,+∞)

分析 由切线的斜率小于等于0,解不等式即可得到所求减区间.

解答 解:任一点(x0,f(x0))处的切线斜率k=(x0-3)(x0+1)2
由k≤0,解得x0≤3,
即有单调减区间为(-∞,3].
故选B.

点评 本题考查导数的运用:求切线的斜率和单调区间,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若a>1,b>1,n∈N*,则下列各式:①$\frac{1}{lo{g}_{b}a}$;②$\frac{lgb}{lga}$;③log${\;}_{{a}^{n}}$bn;④$\frac{1-lo{g}_{ab}a}{1-lo{g}_{ab}b}$中与logab相等的是①②③④(把符合的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A,B,C所对的边分别是a,b,c,已知b=3,A=30°,若解此三角形时有两解,则a的取值范围为$\frac{3}{2}$<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列命题中:
①若函数f(x)的定义域为R,则g(x)=f(x)-f(-x)为奇函数;
②若函数f(x)的定义域为R上的奇函数,且对任意x∈R,都有f(x)=f(2-x),则任意x∈R,都有f(x)=f(4+x);
③若f(x+1)为奇函数,则f(x)关于(1,0)对称;
④若f(x)f(x-2)=3,则f(x)是周期为4的函数.
其中正确的命题是①②③④(请把正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了了解某地初三年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高单位:cm),分组情况如下:
分组147.5~155.5155.5~163.5163.5~171.5171.5~179.5
频数621m
频率a0.1
(1)求出表中a,m的值;
(2)画出频率分布直方图;
(3)估计这组数据的众数、平均数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)部分图象如图所示.
(Ⅰ)求f(x)的解析式及中心对称点;
(Ⅱ)设g(x)=f(x)-cos2x,求函数g(x)在区间$x∈[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正项数列{an},a1=1,前n项和Sn满足Sn$\sqrt{{S}_{n-1}}$-Sn-1$\sqrt{{S}_{n}}$=2$\sqrt{{S}_{n}{S}_{n-1}}$(n≥2),则a10=(  )
A.72B.80C.90D.82

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.定义在数列{an}中,若满足$\frac{{a}_{n+2}}{{a}_{n+1}}-\frac{{a}_{n+1}}{{a}_{n}}=d(n∈{R}^{+},d为常数)$为“等差比数列”,已知在等差比数列中,a1=a2=1,a3=3,则$\frac{{a}_{2015}}{{a}_{2013}}$=4×20132-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个集合中,是空集的是(  )
A.{0}B.{x|x>8,且x<5}C.{x∈N|x2-1=0}D.{x|x>4}

查看答案和解析>>

同步练习册答案