精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+1)=
1f(x)
,且当x∈[0,2)时,f(x)=log2(x+1),则f(-2010)+f(2011)的值为
1
1
分析:根据题意利用仿写的方法可得:对于x≥0,都有f(x+2)=f(x),可得当x≥0时函数的周期为T=2,然后由函数为偶函数可得f(-2 010)+f(2 011)=f(0)+f(1),代入可求.
解答:解:因为对于x≥0,都有f(x+1)=
1
f(x)

所以f(x+2)=
1
f(x+1)

所以f(x)=f(x+2),
所以函数的周期为T=2.
∵函数f(x)是(-∞,+∞)上的偶函数,x∈[0,2),f(x)=log2(x+1),
∴f(-2010)+f(2011)=f(2010)+f(2011)=f(0)+f(1)=log21+log2(1+1)=1.
故答案为:1
点评:题考查了函数性质:函数的奇偶性、函数的周期的综合运用,及转化的思想在解题中的运用,解答本题的关键是熟练掌握函数的性质及一些常用的反映函数性质的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集的补集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在区间[0,3]上是增函数,则f(x)在[-9,9]上零点个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式|f(x-2)|>2的解集是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,且f(1)=1,那么f(-1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数.
(1)证明:f(x)=f(|x|)
(2)若当x≥0时,f(x)是单调函数,求满足f(x)=f(
x+3x+4
)
的所有x之和.

查看答案和解析>>

同步练习册答案