精英家教网 > 高中数学 > 题目详情
1.若f(x)=cos(2x+φ)+b,对任意实数x都有f(x)=f($\frac{π}{3}$-x),f($\frac{2π}{3}$)=-1,则实数b的值为(  )
A.-2或0B.0或1C.±1D.±2

分析 由题意可得 f(x)的图象关于直线x=$\frac{π}{6}$对称,求得φ=kπ-$\frac{π}{3}$,k∈Z.再根据f($\frac{2π}{3}$)=-1求得b的解析式,利用余弦函数的最值,求得b的值.

解答 解:若f(x)=cos(2x+φ)+b,对任意实数x都有f(x)=f($\frac{π}{3}$-x),∴f(x)的图象关于直线x=$\frac{π}{6}$对称,
∴$\frac{π}{3}$+φ=kπ,即φ=kπ-$\frac{π}{3}$,k∈Z.
∵f($\frac{2π}{3}$)=cos($\frac{4π}{3}$+φ)+b=cos($\frac{4π}{3}$+kπ-$\frac{π}{3}$  )+b=cos(k+1)π+b=-1,b=-1-cos(k+1)π,
当k为偶数时,b=2;当k为奇数时,b=0,
故选:A.

点评 本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.比较大小:sin10°>sin9°(填“>”、“<”或“=”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),左、右焦点分别是F1、F2且|F1F2|=2$\sqrt{3}$,以F1为圆心,3为半径的圆与以F2为圆心,1为班级的圆相交于椭圆C上的点K
(1)求椭圆C的方程;
(2)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q
①求$\frac{|OQ|}{|OP|}$的值;
②令$\frac{{m}^{2}}{1+4{k}^{2}}$=t,求△ABQ的面积f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图是某学校随机调查200 名走读生上学路上所需时间t(单位:分钟)的样本频率分布直方图.
(1)求x的值;
(2)用样本估计总体的思想,估计学校所有走读生上学路上所需要的平均时间是多少分钟?
(3)若用分层抽样的方法从这200名走读生中,抽出25 人做调查,求应在上学路上所需时间分别为[6,10],[18,22]这两组中各抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知0<θ<π,sinθ+cosθ=$\frac{1}{5}$,则角θ的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.平面上A、B、C三点不共线,O是不同于A、B、C的任意一点,若($\overrightarrow{OB}$+$\overrightarrow{OC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=0,则△ABC的形状是(  )
A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow a,\overrightarrow b$均为单位向量,且|$\overrightarrow a+2\overrightarrow b$|=$\sqrt{3}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn满足an=$\frac{1}{2}$Sn-5n(n≥1且n∈N*).
(I)求证:数列{an-10}为等比数列;
(II)记bn=(3n-2)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等差数列{an}中,a1,a4031是函数f(x)=$\frac{1}{3}{x^3}$-4x2+6x-1的极值点,则log2a2016的值是(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案