精英家教网 > 高中数学 > 题目详情

【题目】曲线y=1+与直线y=k(x-2)+4有两个交点,则实数k的取值范围是( )

A. (,+∞)B. (]C. (0,)D. (]

【答案】D

【解析】

根据直线的点斜式方程可得直线经过点,曲线表示以圆心半径为2的圆的上半圆,由此作出图形,求出半圆切线的斜率和直线与半圆相交时斜率的最小值,数形结合可得结果.

根据题意画出图形,如图所示:

由题意可得:直线过A(2,4),B(-2,-1),

又曲线y=1+图象为以(0,1)为圆心,2为半径的半圆,

当直线与半圆相切,C为切点时,圆心到直线的距离d=r=2,

解得:k=

当直线过B点时,直线的斜率为

则直线与半圆有两个不同的交点时,

实数k的取值范围为(],故答案为(].故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有一个关于平面图形的命题:如图,同一平面内有两个边长都是2的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知函数fx2x),若fθ∈(0),求tanθ

2)若函数gx)=﹣(sincoscos,讨论函数gx)在区间[上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.

问:(1)这个几何体是什么?

(2)这个几何体由几个面构成?每个面的三角形是什么三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分两层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:

表1:

生产能力分组

人数

4

8

x

5

3

表2:

生产能力分组

人数

6

y

36

18

(1)求x,y的值;

(2)在答题纸上完成频率分布直方图;并根据频率分布直方图,估计该工厂B类工人生产能力的平均数(同一组中的数据用该区间的中点值作代表)和中位数.(结果均保留一位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;

(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间,佳怡准备去探望奶奶,她到商店买了一盒点心.为了美观起见,售货员对点心盒做了一个捆扎(如图(1)所示),并在角上配了一个花结.售货员说,这样的捆扎不仅漂亮,而且比一般的十字捆扎(如图(2)所示)包装更节省彩绳.你同意这种说法吗?请给出你的理由.(注;长方体点心盒的高小于长、宽.

查看答案和解析>>

同步练习册答案