精英家教网 > 高中数学 > 题目详情
10.已知方程x2+my2=1表示焦点在y轴上的椭圆,则m的取值范围是(  )
A.m<1B.-1<m<1C.m>1D.0<m<1

分析 根据题意,将方程变形为$\frac{{y}^{2}}{\frac{1}{m}}$+$\frac{{x}^{2}}{1}$=1,由椭圆的标准方程分析可得$\frac{1}{m}$>1,解可得m的取值范围,即可得答案.

解答 解:根据题意,方程x2+my2=1变形可得:$\frac{{y}^{2}}{\frac{1}{m}}$+$\frac{{x}^{2}}{1}$=1,
若其表示焦点在y轴上的椭圆,
则有$\frac{1}{m}$>1,
解可得0<m<1;
故选:D.

点评 本题考查椭圆的标准方程,关键是掌握椭圆的标准方程的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x>0}\\{1-|2x+1|,x≤0}\end{array}\right.$,若关于x的方程f(x)=kx-1有两个不相等的实数根,则实数k的取值范围为{k|k≥2或k=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)为R上的增函数,求证:a+b<0的充要条件是f(a)+f(b)<f(-a)+f(-b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{-4{x}^{2},x<0}\\{{x}^{2}-x,x≥0}\end{array}\right.$,若f(a)=-$\frac{1}{4}$,则a=$\frac{1}{4}$或$\frac{1}{2}$,若方程f(x)-b=0有三个不同的实根,则实数b的取值范围是(-$\frac{1}{4}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“an+1an-1=an2,n≥2且n∈N”是“数列{an}为等比数列”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=f(x)定义在区间(-3,7)上,其导函数如图所示,则函数y=f(x)在区间(-3,7)上极小值的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b,c分别为△ABC的内角A,B,C的对边,且acosC+(c-2b)cosA=0.
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P∩Q=(  )
A.[-1,3]B.[1,3]C.[1,2]D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为$\frac{1}{2}$,且点P在图中阴影部分(包括边界)运动.若$\overrightarrow{AP}=x\overrightarrow{AB}+y\overrightarrow{BC}$,其中x,y∈R,则4x-y的最大值为(  )
A.$3-\frac{{\sqrt{2}}}{4}$B.$3+\frac{{\sqrt{5}}}{2}$C.2D.$3+\;\frac{{\sqrt{17}}}{2}$

查看答案和解析>>

同步练习册答案