【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1) 求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.
【答案】(1)8:27
(2)1:9
(3) 的分布列是
0 | 2 | 4 | |
【解析】试题分析:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件,故;(Ⅰ)这4个人中恰有2人去参加甲游戏的概率为P(A2);(Ⅱ)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;(Ⅲ)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.
试题解析:解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏”为事件(i=0,1,2,3,4),则
(Ⅰ)这4个人中恰有2人去参加甲游戏的概率3分
(Ⅱ)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则,
由于与互斥,故
所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为7分
(Ⅲ)ξ的所有可能取值为0,2,4.由于与互斥,与互斥,故
,
。
所以ξ的分布列是
ξ | 0 | 2 | 4 |
P |
随机变量ξ的数学期望12分.
科目:高中数学 来源: 题型:
【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.
(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;
(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题13分)已知函数f(x)=- (a>0,x>0).
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动点是圆上任意一点,过作轴的垂线,垂足为,若点在线段上,且满足.
(1)求点的轨迹的方程;
(2)设直线与交于, 两点,点坐标为,若直线, 的斜率之和为定值3,求证:直线必经过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元。该企业在一个生产周期消耗A原料不超过13吨,B原料不超过18吨。问该企业如何安排可获得最大利润,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
【答案】(1);(2)2.
【解析】试题分析:
(1)由题意设抛物线方程为,则准线方程为,解得,即可求解抛物线的方程;
(2)由消去得,根据,解得且,得到,即可求解的值.
试题解析:
(1)由题意设抛物线方程为(),其准线方程为,
∵到焦点的距离等于到其准线的距离,∴,∴,
∴此抛物线的方程为.
(2)由消去得,
∵直线与抛物线相交于不同两点、,则有
解得且,
由,解得或(舍去).
∴所求的值为2.
【题型】解答题
【结束】
20
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上.
(1)求证: 平面;
(2)如果三棱锥的体积为,求点到面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的两个焦点分别为, ,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是( )
A. B. C. D.
【答案】C
【解析】试题分析:解:设点P在x轴上方,坐标为(),∵为等腰直角三角形,∴|PF2|=|F1F2|, ,故选D.
考点:椭圆的简单性质
点评:本题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系
【题型】单选题
【结束】
8
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com