分析 化简$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$,利用洛必达法则求$\underset{lim}{x→+∞}$[x•ln($\frac{2}{π}$αrctanx)],从而解得.
解答 解:$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x
=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$
∵$\underset{lim}{x→+∞}$[x•ln($\frac{2}{π}$αrctanx)]
=$\underset{lim}{x→+∞}$$\frac{ln(\frac{2}{π}αrctanx)}{\frac{1}{x}}$
=$\underset{lim}{x→+∞}$($\frac{π}{2αrctanx}$•$\frac{2}{π}$•$\frac{1}{1+{x}^{2}}$)•(-x2)
=-$\underset{lim}{x→+∞}$$\frac{1}{αrctanx}$
=-$\frac{2}{π}$,
故$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$=${e}^{-\frac{2}{π}}$.
点评 本题考查了洛必达法则的应用.
科目:高中数学 来源: 题型:选择题
A. | n<2? | B. | n<3? | C. | n<4? | D. | n<5? |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{6}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/元 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.01 | 7.0 | 10.0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a≥3 | B. | a≥-3 | C. | a≤-3 | D. | a≤5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com