精英家教网 > 高中数学 > 题目详情
16.求$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x

分析 化简$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$,利用洛必达法则求$\underset{lim}{x→+∞}$[x•ln($\frac{2}{π}$αrctanx)],从而解得.

解答 解:$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x
=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$
∵$\underset{lim}{x→+∞}$[x•ln($\frac{2}{π}$αrctanx)]
=$\underset{lim}{x→+∞}$$\frac{ln(\frac{2}{π}αrctanx)}{\frac{1}{x}}$
=$\underset{lim}{x→+∞}$($\frac{π}{2αrctanx}$•$\frac{2}{π}$•$\frac{1}{1+{x}^{2}}$)•(-x2
=-$\underset{lim}{x→+∞}$$\frac{1}{αrctanx}$
=-$\frac{2}{π}$,
故$\underset{lim}{x→+∞}$($\frac{2}{π}$arctanx)x=$\underset{lim}{x→+∞}$${e}^{x•ln(\frac{2}{π}αrctanx)}$=${e}^{-\frac{2}{π}}$.

点评 本题考查了洛必达法则的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.阅读如图所示的程序框图,运行相应的程序,若输出的结果s=16,则图中菱形内应该填写的内容是(  )
A.n<2?B.n<3?C.n<4?D.n<5?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.小李以10元一股的价格购买了一支股票,他将股票当天的最高价格y(元)与第t个交易日,其中0≤t≤24进行了记录,得到有关数据如下:
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他经过研究后认为单支股票当天的最高价格y(元)是第t个交易日的函数y=f(t),并且认为y=f(t)的曲线可近似地看作函数f(t)=Asinωt+h的图象,请根据他的观点解决问题:试根据以上数据,求出函数f(t)=Asinωt+h的振幅、最小正周期和表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程log${\;}_{2}^{2}$x-2log2x+3-a=0在[1,8]上有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C被直线x+y+3=0所截得的弦长为4,则圆C的方程为(x+1)2+y2=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若f(x)=x2+2(a-1)x+2在区间(4,+∞)上是增函数,那么实数a的取值范围是(  )
A.a≥3B.a≥-3C.a≤-3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{$n•{2}^{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(m2-m-1)${x}^{{m}^{2}-2m-3}$,当m取什么值时.
(1)f(x)是正比例函数;
(2)f(x)是反比例函数;
(3)f(x)是幂函数,且在第一象限内它的图象是下降曲线.

查看答案和解析>>

同步练习册答案