精英家教网 > 高中数学 > 题目详情

 若命题:“,使等式成立”是真命题,则实数的取值范围是

A.        B.    C.    D.

 

【答案】

 B 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年潮州市二模理)(14分)已知函数的导数满足,常数为方程的实数根.

⑴ 若函数的定义域为I,对任意,存在,使等式=成立,

 求证:方程不存在异于的实数根;

⑵ 求证:当时,总有成立;

⑶ 对任意,若满足,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年沈阳二中四模)(12分) 已知函数的定义域为I,导数满足0<<2  且≠1,常数c1为方程的实数根,常数c2为方程的实数根.

(I)求证:当时,总有成立;

(II)若对任意,存在,使等式 成立.试问:方程有几个实数根,并说明理由;

(Ⅲ)(理科生答文科生不答)对任意,若满足,求证:

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省兴化市高三12月月考数学试卷(解析版) 题型:解答题

已知命题:“,使等式成立”是真命题.

(1)求实数m的取值集合M;

(2)设不等式的解集为N,若的必要条件,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知是公差为d的等差数列,是公比为q的等比数列

(Ⅰ)若 ,是否存在,有?请说明理由;

(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;

(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.

【解析】第一问中,由,整理后,可得为整数不存在,使等式成立。

(2)中当时,则

,其中是大于等于的整数

反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)中设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

结合二项式定理得到结论。

解(1)由,整理后,可得为整数不存在,使等式成立。

(2)当时,则,其中是大于等于的整数反之当时,其中是大于等于的整数,则

显然,其中

满足的充要条件是,其中是大于等于的整数

(3)设为偶数时,式左边为偶数,右边为奇数,

为偶数时,式不成立。由式得,整理

时,符合题意。当为奇数时,

   由,得

为奇数时,此时,一定有使上式一定成立。为奇数时,命题都成立

 

查看答案和解析>>

同步练习册答案