精英家教网 > 高中数学 > 题目详情
如图,正方形OABC的边长为2.
(1)在其四边或内部取点P(x,y),且x,y∈Z,求事件:“|OP|>1”的概率;
(2)在其内部取点P(x,y),且x,y∈R,求事件“△POA,△PAB,△PBC,△PCO的面积均大于
2
3
”的概率.
考点:几何概型
专题:概率与统计
分析:(1)分析出正方形的四边和内部取点P(x,y),且x,y∈Z的全部基本事件个数,及满足“|OP|>1”的基本事件个数,代入古典概型公式可得事件“|OP|>1”的概率;
(2)求出满足条件的所有基本事件对应的平面区域Ω的面积,及满足条件“△POA,△PAB,△PBC,△PCO的面积均大于
2
3
的平面区域面积,代入几何概型公式,可得事件“△POA,△PAB,△PBC,△PCO的面积均大于
2
3
”的概率
解答: 解:(1)在正方形的四边和内部取点P(x,y),且x,y∈Z,所有可能的事件是
(0,0),(0,1),(0,2),(1,0),(1,1),
(1,2),(2,0),(2,1),(2,2),
其中满足|OP|>1的事件是
(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),
所以满足|OP|>1的概率为
2
3
.(6分)
(2)在正方形内部取点,其总的事件包含的区域面积为4,
由于各边长为2,
2
3
所以要使△POA,△PAB,△PBC,△PCO的面积均大于
2
3

应该三角形的高大于
2
3

所以这个区域为每个边长从两端各去掉
2
3
后剩余的正方形,
其面积为
2
3
×
2
3
=
4
9

所以满足条件的概率为
4
9
4
=
1
9
.(12分)
点评:本题考查的知识点是几何概型,及古典概型,其中求出所有基本事件个数(对应区域面积)和满足条件的基本事件个数(对应区域面积)是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=4sin(
2x
3
+
π
6
)-3.
(1)当x∈[0,π],求f(x)的值域;
(2)求f(x)的增区间;
(3)说明函数f(x)=4sin(
2x
3
+
π
6
)-2是由函数y=sinx的图象经过怎样的变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4
(x+1)2,若存在t∈R,只要x∈[1,m](m>1),就有f(x+t)≤x,则m的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l2过A(1,0)、B(0,5),若直线l1与l2的距离是5,则l1的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱B1C1、B1B的中点,求证:CF⊥平面EAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过三点(0,0)(1,1)(4,2)的圆的圆心坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足xy+2x+3y-3=0.
(1)若x,y∈R,则x+y的取值范围是
 

(2)若x,y∈R+,则x+y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线W:y2=4x的焦点为F,过F的直线与W相交于A,B两点,记点F到直线l:x=-1的距离为d,则有(  )
A、|AB|≥2d
B、|AB|=2d
C、|AB|≤2d
D、|AB|<2d

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-x2+ax+b在点x=1处的切线与直线y=2x+1垂直,则a=
 

查看答案和解析>>

同步练习册答案