精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=log (x2﹣2x)的单调递增区间是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

【答案】C
【解析】解:令t=x2﹣2x>0,求得x<0,或x>2,故函数的定义域为(﹣∞,0)∪(2,+∞),
且f(x)=log (x2﹣2x)=g(t)=log t.
根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间.
再利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间为(﹣∞,0),
故选:C.
令t=x2﹣2x>0,求得函数的定义域,且f(x)=g(t)=log t,根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间,利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
(3)若M是PC的中点,求三棱锥C﹣MAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=log (﹣3+4x﹣x2)的单调递增区间是(
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)= ﹣k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABC⊥平面BCDE,BC∥DE, ,BE=CD=2,AB⊥BC,M,N分别为DE,AD中点.

(1)证明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,点P为棱AD的三等分点(近A),平面PMC与平面ABC所成锐二面角的余弦值为 ,求棱AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.
(1)讨论f(x)的单调性;
(2)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.
(1)求函数g(x)的解析式;
(2)设f(x)= .若f(2x)﹣k2x≤0在x∈[﹣3,3]时恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

同步练习册答案