精英家教网 > 高中数学 > 题目详情

设0<θ<,已知,猜想=________.

 

【答案】

2cos

【解析】

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设0<θ<
π
2
,已知a1=2cosθ,an+1=
an+2
(n∈N*)
,猜想an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设0≤θ<2π时,已知两个向量
OP1
=(cosθ,  sinθ),  
OP2
=(2+sinθ,  2-cosθ)
,则|
P1P2
|
的最大值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

0<θ<
π
2
,已知a1=2cosθ,an+1=
2+an
(n∈N*),通过计算数列{an}的前几项,猜想其通项公式为an=
2cos
θ
2n-1
2cos
θ
2n-1
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<θ<
π
2
,已知a1=2cosθ,an+1=
2+an
(n∈N*),猜想an等于(  )
A、2cos
θ
2n
B、2cos
θ
2n-1
C、2cos
θ
2n+1
D、2sin
θ
2n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设0≤θ<2π时,已知两个向量
OP1
=(cosθ,  sinθ),  
OP2
=(2+sinθ,  2-cosθ)
,则|
P1P2
|
的最大值为______.

查看答案和解析>>

同步练习册答案