精英家教网 > 高中数学 > 题目详情
1.设x>0,0<bx<ax<1,则正实数a,b的大小关系为(  )
A.1>a>bB.1>b>aC.1<a<bD.1<b<a

分析 根据题意,假设有指数函数y=ax与y=bx,由指数函数的性质可得a>1且b>1,又由0<bx<ax<1,则有$\frac{{b}^{x}}{{a}^{x}}$=($\frac{b}{a}$)x<1,结合指数函数的性质分析可得a>b;即可得答案.

解答 解:根据题意,假设有指数函数y=ax与y=bx
若x>0,有0<bx<ax<1,
则有a>1且b>1,
若0<bx<ax<1,则有$\frac{{b}^{x}}{{a}^{x}}$=($\frac{b}{a}$)x<1,
又由x>0,则$\frac{b}{a}$<1,即a>b,
则有1>a>b;
故选:A.

点评 本题考查指数函数的图象与性质,关键是掌握指数函数的图象变化的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若复数z=-2+i,则$\frac{z•\overline z}{i}$=-5i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)(x∈R)且在[0,+∞)上是增函数,g(x)=f(|x|),若g(2x-1)<g(2),则x的取值范围是(  )
A.(-$\frac{1}{2}$,$\frac{3}{2}$)B.(-∞,$\frac{3}{2}$)C.($\frac{3}{2}$,+∞)D.(-∞,$-\frac{1}{2}$)∪($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={4,5,6},则(∁UA)∩B=(  )
A.{2}B.{2,4}C.{4,6}D.{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\sqrt{lo{g}_{5}(1-2sinx)}$,(-$\frac{π}{2}$≤x≤$\frac{π}{2}$)的定义域是(  )
A.[-$\frac{π}{2}$,0]B.[-$\frac{π}{2}$,$\frac{π}{6}$)C.[-$\frac{π}{2}$,0)D.[-$\frac{π}{2}$,$\frac{π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知幂函数f(x)的图象过点(2,16),则f($\sqrt{3}$)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正三棱柱ABC-A1B1C的各条棱长都为a,P为A1B的中点,M为AB的中点,
(1)求证:AB⊥平面PMC;
(2)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线3x+4y-4=0与圆x2+y2+6x-4y=0相交所得弦的长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若tanα=3tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案