【题目】在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)求证直线和曲线相交于两点、,并求的值.
科目:高中数学 来源: 题型:
【题目】已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示
(1)求此函数的解析式;
(2)求此函数在(﹣2π,2π)上的递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2α+ )=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4一1:几何证明选讲 如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列结论正确的有( )
A. 函数的最大值为2;
B. 函数的图象关于点对称;
C. 函数的图象左移个单位可得函数的图象;
D. 函数的图象与函数的图象关于轴对称;
E. 若实数使得方程在上恰好有三个实数解,,,则一定有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)令,可将已知三角函数关系转换成代数函数关系,试写出函数的解析式及定义域;
(2)求函数的最大值;
(3)函数在区间内是单调函数吗?若是,请指出其单调性;若不是,请分别指出其单调递增区间和单调递减区间(不需要证明).
(参考公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,曲线C1: (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ. (Ⅰ)求C2与C3交点的直角坐标;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com