精英家教网 > 高中数学 > 题目详情

【题目】已知:在平面四边形ABCD中,(如图1),若将沿对角线BD折叠,使(如图2.请在图2中解答下列问题.

1)证明:

2)求三棱锥的高.

【答案】1)证明见解析;(2

【解析】

(1)在图1中,根据平面几何知识可得BC=1且∠CBD90°,在图2中可以得到AC2=AB2+CB2,从而可证明BC⊥平面ABD从而可证明结论.

(2)由(1)有,用等体积法有.

证明:法1:由左图知,

BDC中,∠CBD135°-45°=90°

BDC75°-45°=30°

,所以BC=1

又在右图中,因为ACABAD,所以AC2=AB2+CB2

所以BCAB

又因为∠CBD90°,所以BC⊥平面ABD

所以BCAD

2:如右图,设BD的中点为O,连结A0CO,因为∠A90°ABAD

由左图知,在BDC中,∠CBD135°-45°=90°

BDC75°-45°=30°,所以BC=1,所以

又因为AC,所以AC2=AO2+CO2

所以AOCO,所以AO⊥平面BCD,所以平面ABD⊥平面BCD,又∠CBD=90°

所以BC⊥平面ABD 所以BCAD

2)因为ABADACCD2=BC2+BD2=4

所以CD2=AC2+AD2,所以ACAD

设三棱锥BADC的高为h,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若是椭圆上不重合的四点,相交于点,且,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设,求函数在区间上的最小值;

3)某同学发现:总存在正实数,使,试问:该同学的判断是否正确?若不正确,请说明理由;若正确,请直接写出的取值范围(不需要解答过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人的月工资由基础工资和绩效工资组成2010年每月的基础工资为2100元、绩效工资为2000元从2011年起每月基础工资比上一年增加210元、绩效工资为上一年的照此推算,此人2019年的年薪为______万元(结果精确到)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果 :(以下均视频率为概率)

配方的频数分配表:

指标值分组

频数

配方的频数分配表:

指标值分组

频数

(1)若从配方产品中有放回地随机抽取件,记“抽出的配方产品中至少件二级品”为事件,求事件发生的概率

(2)若两种新产品的利润率与质量指标满足如下关系:,其中,从长期来看,投资哪种配方的产品平均利润率较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生和4名女生中选出4人参加辩论比赛.

1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法?

2)如果4个人中既有男生又有女生,那么有多少种不同选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高衡水市的整体旅游服务质量,市旅游局举办了旅游知识竞赛,参赛单位为本市内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游3名,其中高级导游1名.从这6名导游中随机选择2人参加比赛.

(1)求选出的2名都是高级导游的概率;

(2)为了进一步了解各旅游协会每年对本地经济收入的贡献情况,经多次统计得到,甲旅游协会对本地经济收入的贡献范围是(单位:万元),乙旅游协会对本地经济收入的贡献范围是(单位:万元),求甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,且,平面平面O的中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数yfx),若在其定义域内存在x0,使得x0fx0)=1成立,则称函数fx)具有性质M

1)下列函数中具有性质M的有____

fx)=﹣x+2

fx)=sinxx[02π]

fx)=x,(x∈(0+∞))

fx

2)若函数fx)=a|x2|1)(x[1+∞))具有性质M,则实数a的取值范围是____

查看答案和解析>>

同步练习册答案