【题目】在中,角所对的边分别为,且, 是的中点,且, ,则的最短边的边长为__________.
科目:高中数学 来源: 题型:
【题目】(导学号:05856333)
已知椭圆C: (a>b>0)的离心率为,其右焦点为F(c,0),第一象限的点A在椭圆C上,且AF⊥x轴.
(Ⅰ)若椭圆C过点(1,- ),求椭圆C的标准方程;
(Ⅱ)已知直线l:y=x-c与椭圆C交于M,N两点,且B(4c,yB)为直线l上的点,证明:直线AM,AB,AN的斜率满足kAB=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正确的,设实数m的取值集合为M.
(1)求集合M;
(2)设关于x的不等式(x-a)(x+a-2)<0(a∈R)的解集为N,若“x∈M”是“x∈N”的充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体ABCD-A′B′C′D′的外接球的体积为π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来随着我国在教育利研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内确实力企业纷纷进行海外布局,第二轮企业出海潮到来,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派上作的态度,按分层抽样的方式从70后利80后的员工中随机调查了100位,得到数据如下表:
愿意被外派 | 不愿意被外派 | 合计 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合计 | 60 | 40 | 100 |
(1)根据凋查的数据,是否有的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加,70后的员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某社区为了解辖区住户中离退休老人每天的平均户外“活动时间”,从辖区住户的离退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外“活动时间”(单位:小时),活动时间按照、、…、从少到多分成9组,制成样本的频率分布直方图如图所示.
(1)求图中的值;
(2)估计该社区住户中离退休老人每天的平均户外“活动时间”的中位数;
(3)在、这两组中采用分层抽样抽取7人,再从这7人中随机抽取2人,求抽取的两人恰好都在同一个组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记为这两人中观看升旗的时刻早于7:00的人数,求的 分布列和数学期望;
(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为),记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形,侧棱底面, 分别是的中点, , .
(Ⅰ)求证: 平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)在棱上是否存在一点,使得平面平面?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com