精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,则该几何体的体积为(  )
A、
2
3
B、
1
2
C、
1
3
D、
5
6
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图可得该几何体是正方体的内接正四棱锥,由三视图中的数据和间接法求出几何体的体积.
解答: 解:由三视图可得,该几何体是棱长为1的正方体的内接正四棱锥,
所以此正四棱锥的体积V=1-4×
1
3
×
1
2
×1×1×1
=
1
3

故选:C.
点评:本题考查了正方体的内接正四棱锥的体积,解题的关键是由三视图正确还原几何体,并求出几何体中几何元素的长度,考查空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1,底面边长为
2
,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR
(1)求证:C1Q⊥平面PQR;
(2)若C1Q=
3
,求四面体C1PQR的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y2-xy+2x+k=0过点(a,-a)(a∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
i
1+2i
(i是虚数单位)的虚部是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将指数形式256=2x化为对数形式,下列结果正确的是(  )
A、log2256=8
B、log2562=8
C、log8256=2
D、log2568=2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AB⊥AC,AC⊥BB1,AB=A1B=AC=1,BB1=
2

(Ⅰ)求证:A1B⊥平面ABC;
(Ⅱ)若P是棱B1C1的中点,求二面角P-AB-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=2x2-7,求:曲线上哪一点的切线平行于直线4x-y-2=0?

查看答案和解析>>

科目:高中数学 来源: 题型:

十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数610121255
赞成人数3610643
(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;
(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若将一个圆锥的侧面沿着一条母线剪开,其展开图是半径为2的半圆,则该圆锥的体积为
 

查看答案和解析>>

同步练习册答案