精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=log2(4-x2)的定义域为(-2,2),值域为(-∞,2],单调递增区间为(-2,0).

分析 由对数的真数大于0,解不等式可得定义域;再由二次函数的值域,结合对数函数的单调性,可得值域;再由复合函数的单调性:同增异减,即可得到所求增区间.

解答 解:由4-x2>0,解得-2<x<2,
即定义域为(-2,2);
又0<4-x2≤4,
即有f(x)=log2(4-x2)≤log24=2,
则值域为(-∞,2];
令t=4-x2,y=log2t,
由t在(-2,0)递增,y=log2t在t>0递增,
即有f(x)的增区间为(-2,0).
故答案为:(-2,2),(-∞,2],(-2,0).

点评 本题考查函数的性质和运用,考查函数的定义域和值域,以及单调区间的求法,注意运用复合函数的单调性:同增异减,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设曲线x2-y2=0与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为(  )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U=N,集合P={1,2,3,4,5},Q={2,3,6,7,8},则P∩(∁UQ)={1,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=sinx+cosx(x∈R)的图象向右平移了m个单位后,得到函数y=f′(x)的图象,其中m∈(0,2π),则m的值是$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点P(-1,0)在动直线mx+y+2-m=0(m∈R )上射影为M,则点M到直线x-y=5的距离的最大值是3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a=(x-5,3),\vec b=(2,x),且\vec a⊥\vec b$,则x=(  )
A.2或3B.-1或6C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|,不等式f(2x)≤4的解集为{x|0≤x≤4}.
(1)求a的值
(2)若不等式f(x)+f(x+m)<2的解集是空集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=sin(x+$\frac{π}{6}$)的图象上各点的横坐标压缩为原来的$\frac{1}{2}$倍(纵坐标不变),所得函数在下面哪个区间单调递增(  )
A.(-$\frac{π}{3}$,$\frac{π}{6}$)?B.(-$\frac{π}{2}$,$\frac{π}{2}$)?C.(-$\frac{π}{3}$,$\frac{π}{3}$)??D.(-$\frac{π}{6}$,$\frac{2π}{3}$)?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=lnx+(x-b)2(b∈R)在区间$[{\frac{1}{2},2}]$上存在单调递增区间,则实数b的取值范围是(  )
A.$({-∞,\frac{3}{2}})$B.$({-∞,\frac{9}{4}})$C.(-∞,3)D.$({-∞,\sqrt{2}})$

查看答案和解析>>

同步练习册答案