精英家教网 > 高中数学 > 题目详情

【题目】是等比数列的公比大于,其前项和为是等差数列,已知.

1)求的通项公式

2)设,数列的前项和为,求

3)设,其中,

【答案】1;(2;(3.

【解析】

1)设等比数列的公比为,则,设等差数列的公差为,利用等比数列的通项公式可求得的值,利用等差数列的通项公式建立有关的方程组,解出这两个未知数,再利用等比数列和等差数列的通项公式可求得这两个数列的通项公式;

2)由,利用裂项相消法可求得

3)求得,可得,通过分组求和以及错位相减法即可得出结果.

1)设等比数列的公比为,则,设等差数列的公差为

,由,得,解得,则.

,解得,则

2

3)由,其中

可得

其中

两式相减得

整理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)当时,讨论函数的单调性;

2)当,且时,

i)若有两个极值点,求证:

ii)若对任意的,都有成立,求正实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(Ⅰ)若的必要条件,求实数的取值范围;

(Ⅱ)若,“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:

分组

频数

频率

15

0.30

29

2

合计

1

1)求出表中及图中的值;

2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间内的人数;

3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有两个不等实根的概率.

2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与抛物线的准线交于两点,且

(1)求抛物线的方程;

(2)若直线与曲线交于两点,且曲线上存在两点关于直线对称,求实数的取值范围及的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面的中点,是线段上的一点,且,连接.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求的极小值;

2)若对任意的实数a,函数上总有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到直线的距离比到点的距离大

1)求动点的轨迹的方程;

2上两点,为坐标原点,,过分别作的两条切线,相交于点,求面积的最小值.

查看答案和解析>>

同步练习册答案