精英家教网 > 高中数学 > 题目详情
水平桌面儿上放置着一个容积为V的密闭长方体玻璃容器ABCD—A1B1C1D1,其中装有V的水。
(1)把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中水的形状始终是柱体;(2)在(1)中的运动过程中,水面始终是矩形;(3)把容器提离桌面,随意转动,水面始终过长方体内的一个定点;(4)在(3)中水与容器的接触面积始终不变。
以上说法正确的是_____.
因运动过程中水始终是矩形,且水柱部分始终与空柱部分分别与中心O成中心对称。所以(1)(2)(3)(4)均正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,
M为AP的中点.
(Ⅰ)求证:DM∥平面PCB;                      
(Ⅱ)求直线AD与PB所成角;
(Ⅲ)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,的中点,上一点,且
(1)求证: 平面
(2)求三棱锥的体积;
(3)试在上找一点,使得平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在五棱锥P-ABCDE中,PA=AB=AE=2aPB=PE=aBC=DE=a
∠EAB=∠ABC=∠DEA=90°.
(1)求证:PA⊥平面ABCDE
(2)若G为PE中点,求证:平面PDE
(3)求二面角A-PD-E的正弦值;
(4)求点C到平面PDE的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是正方形,是正方形的中心,底面的中点.

求证:(Ⅰ)∥平面
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,一条直角走廊宽为2米。现有一转动灵活的平板车,其平板面为矩形ABEF,它的宽为1米。直线EF分别交直线AC、BCM、N,过墙角DDPACPDQBCQ;若平板车要想顺利通过直角走廊,其长度不能超过多少米?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(I)求异面直线MN和CD1所成的角;
(II)证明:EF//平面B1CD1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆锥的母线长为2,轴截面是等边三角形,则轴截面的面积是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案