精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=0,且对任意k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*
(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk
分析:(Ⅰ)证明:由题设,可得a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2,a2k+2=2(k+1)2.于是
a2k+1
a2k
=
k+1
k
a2k+2
a2k+1
=
k+1
k
,所以
a2k+2
a2k+1
=
a2k+1
a2k
,由此可知当dk=2k时,对任意k∈N*,a2k,a2k+1,a2k+2成等比数列.
(Ⅱ)由题意可知,
a2k+2
a2k+1
=
a2k+1
a2k
=
k+1
k
,从而
a2k+2
a2k
=
(k+1)2
k2
,k∈N*

因此,a2k=
a2k
a2k-2
.
a2k-2
a2k-4
a4
a2
a2=
k2
(k-1)2
.
(k-1)2
(k-2)2
22
12
.2=2k2a2k+1=a2k.
k+1
k
=2k(k+1),k∈N*

再分情况讨论求解.
解答:(Ⅰ)证明:由题设,可得a2k+1-a2k-1=4k,k∈N*
所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)++(a3-a1
=4k+4(k-1)++4×1
=2k(k+1)
由a1=0,得a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2,a2k+2=2(k+1)2
于是
a2k+1
a2k
=
k+1
k
a2k+2
a2k+1
=
k+1
k
,所以
a2k+2
a2k+1
=
a2k+1
a2k

所以dk=2k时,对任意k∈N*,a2k,a2k+1,a2k+2成等比数列.
(Ⅱ)证明:a1=0,a2=2,可得a3=4,从而q1=
4
2
=2
1
q1-1
=1.由(Ⅰ)有
1
qk-1
=1+k-1=k,得qk=
k+1
k
,k∈N*

所以
a2k+2
a2k+1
=
a2k+1
a2k
=
k+1
k
,从而
a2k+2
a2k
=
(k+1)2
k2
,k∈N*

因此,a2k=
a2k
a2k-2
.
a2k-2
a2k-4
a4
a2
a2=
k2
(k-1)2
.
(k-1)2
(k-2)2
22
12
.2=2k2a2k+1=a2k.
k+1
k
=2k(k+1),k∈N*

以下分两种情况进行讨论:
(1)当n为偶数时,设n=2m(m∈N*(2))
若m=1,则2n-
n
k=2
k2
ak
=2

若m≥2,则
n
k=2
k2
ak
=
m
k=1
(2k)2
a2k
+
m-1
k=1
(2k+1)2
a2k+1
=
m
k=1
4k2
2k2
+
m-1
k=1
4k2+4k+1
2k(k+1)
=2m+
m-1
k=1
[
4k2+4k
2k(k+1)
+
1
2k(k+1)
]=2m+
m-1
k=1
[2+
1
2
(
1
k
-
1
k+1
)]

=2m+2(m-1)+
1
2
(1-
1
m
)=2n-
3
2
-
1
n.

所以2n-
n
k=2
k2
ak
=
3
2
+
1
n
,从而
3
2
<2n-
n
k=2
k2
ak
<2,n=4,6,8

(2)当n为奇数时,设n=2m+1(m∈N*
n
k=2
k2
ak
=
2m
k=2
k2
ak
+
(2m+1)
a2m+1
2
=4m-
3
2
-
1
2m
+
(2m+1)2
2m(m+1)
=4m+
1
2
-
1
2(m+1)
=2n-
3
2
-
1
n+1

所以2n-
n
k=2
k2
ak
=
3
2
+
1
n+1

从而
3
2
<2n-
n
k=2
k2
ak
<2,n=3,5,7

综合(1)(2)可知,对任意n≥2,n∈N*,有
3
2
<2n-
n
k=2
k2
ak
≤2
点评:本题主要考查等差数列的定义及通项公式,前n项和公式、等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案