精英家教网 > 高中数学 > 题目详情
设F1,F2是双曲线
x2
4
-y2=1的两个焦点,点P在双曲线上,且
PF1
PF2
=0,则|
PF1
|•|
PF2
|的值等于(  )
A、2
B、2
2
C、4
D、8
分析:先由已知F1(-
5
,0),F2(
5
,0)
,得出|F1F2|=2
5
.再由向量的数量积为0得出直角三角形PF1F2,最后在此直角三角形中利用勾股定理及双曲线的定义列出关于的方程,即可解得|
PF1
|•|
PF2
|的值.
解答:解:由已知F1(-
5
,0),F2(
5
,0)
,则|F1F2|=2
5

|PF1|2+|PF2|2=|F1F2|2=20
||PF1|-|PF2|=4

|
PF1
|•|
PF2
|=2

故选A.
点评:本题主要考查了双曲线的应用及向量垂直的条件.考查了学生对双曲线定义和基本知识的掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点,点P在双曲线上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),则双曲线的离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线x2-
y224
=1
的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设F1,F2是双曲线
x2
3
-y2=1
的两个焦点,P在双曲线上,当△F1PF2的面积为2时,
PF1
PF2
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点),且tan∠PF2F1=2,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案