【题目】已知梯形ABCD,,,,P为三角形BCD内一点(包括边界),,则的取值范围为________.
【答案】
【解析】
根据题意可分别以边AB,AD所在直线为x′轴,y′轴,建立平面直角坐标系,从而得出A(0,0),B(3,0),C(1,1),D(0,1),设P(x′,y′),从而根据可得出,从而得出,并设,从而根据线性规划的知识求出直线截距的最小值和最大值,即得出x+y的最小值和最大值,从而得出x+y的取值范围.
解:∵AB⊥AD,
∴分别以边AB,AD所在的直线为x′,y′轴,建立如图所示平面直角坐标系,则:
A(0,0),B(3,0),C(1,1),D(0,1),
∴,设P(x′,y′),则,
∴由得,(x′,y′)=x(3,0)+y(0,1),
∴,
∴,设,则表示斜率为的一族平行直线,在y轴上的截距为a,当截距最大时x+y最大,当截距最小时x+y最小,
由图可看出,当直线经过点D(0,1)时截距最小为1,当直线经过点C(1,1)时截距最大为,
∴x+y的取值范围为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】给定无穷数列,若无穷数列满足:对任意,都有,则称与“接近”.
(1)设是首项为,公比为的等比数列,,,判断数列是否与接近,并说明理由;
(2)已知是公差为的等差数列,若存在数列满足:与接近,且在这100个值中,至少有一半是正数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的坐标原点为极点,轴正半轴为极轴建立极坐标系.已知椭圆的参数方程为(为参数),直线的极坐标方程与椭相交于两点.
(1)写出直线的普通方程与参数方程:
(2)将椭圆的参数方程转化为普通方程,并求弦长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2﹣9x+1(a∈R),当x≠1时,曲线y=f(x)在点(x0,f(x0)和点(2﹣x0,f(2﹣x0))处的切线总是平行,现过点(﹣2a,a﹣2)作曲线y=f(x)的切线,则可作切线的条数为( )
A..3B..2C.1D..0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 则: (1)曲线的斜率为的切线方程为__________;
(2)设,记在区间上的最大值为.当最小时,的值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)写出曲线的普通方程;
(2)若直线与曲线有两个不同的交点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.
(1)由以上统计数据填写下面列联表,并判断能否在犯错误的概率不超过的前提下认为“成绩优良与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记来自甲班的人数为,求的分布列与数学期望.
附:(其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com