精英家教网 > 高中数学 > 题目详情
10.如果有穷数列{an}满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,我们称其为“对称数列”,例如数列1,2,3,4,3,2,1和1,2,3,4,4,3,2,1都是“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项.则数列{bn}的前2015项和S2015可以是:
①22015-1;     
②22015-2;
③3•2m-1-22m-2016-1;
④3•2m-22m-2016-1;
⑤2m+1-22m-2015-1.
其中正确结论的序号为①③⑤.(请写出所有正确结论的序号)

分析 由题意由于新定义了对称数列,且已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2015项利用等比数列的前n项和定义直接可求①②的正确与否;对于③④⑤,先从等比数列的求和公式求出任意2m项的和,再利用减法得到需要的前2015项的和,即可判断.

解答 解:因为数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,
所以分数列的项数是偶数和奇数讨论.
1)若数列含偶数项,则数列可设为1,21,22,…,2m-1,2m-1,…,22,21,1
当m-1≥2014时,S2015=$\frac{1×(1-{2}^{2015})}{1-2}={2}^{2015}-1$故①正确,②错;
当1007≤m-1<2014时,S2015=2×$\frac{1×(1-{2}^{m})}{1-2}-\frac{1×(1-{2}^{2m-2015})}{1-2}\\;\\;\\;\\;\\;\$=2m+1-22m-2015-1,故⑤正确;
2)若数列含奇数项,则数列可设为可设为1,21,22,…,2m-2,2m-1,2m-2…,22,21,1
当m-1≥2014时,S2009=22009-1;
当1007≤m-1<2014时,所以S2015=2×$\frac{1×(1-{2}^{m-1})}{1-2}+{2}^{m-1}-\frac{1×(1-{2}^{2m-1-2019})}{1-2}$=3•2m-1-22m-2016-1;故③正确;
故答案为:①③⑤

点评 本题考查了新定义对称数列,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.求满足下列条件的椭圆的标准方程.
(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
(2)经过点(2,0),$e=\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且满足2sinAcosB=2sinC-sinB.
(1)若cosB=$\frac{5\sqrt{3}}{14}$,求sinC的值;
(2)若b=5,$\overrightarrow{AC}•\overrightarrow{CB}=-5$,求△ABC的内切圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤0)}\\{cosx-1(x>0)}\end{array}\right.$,试求${∫}_{-1}^{\frac{π}{2}}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设原命题是“等边三角形的三内角相等”,把原命题写成“若p,则q”的形式,并写出它的逆命题,否命题和逆否命题,然后指出它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设随机变量ξ等可能取值1,2,3,4,…,n,如果p(ξ<4)=0.3,则n的值为(  )
A.3B.4C.10D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点$P({1,\frac{3}{2}})$,离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)不过原点的直线l与椭圆C交于A,B两点,若AB的中点M在抛物线E:y2=4x上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若曲线C1:y=x2与曲线C2:y=aex(a>0)至少存在两个交点,则a的取值范围为(  )
A.[$\frac{8}{{e}^{2}}$,+∞)B.(0,$\frac{8}{{e}^{2}}$]C.[$\frac{4}{{e}^{2}}$,+∞)D.(0,$\frac{4}{{e}^{2}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若函数y=f(x+m)在[-1,1]上单调,求m的取值范围;
(3)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围.

查看答案和解析>>

同步练习册答案