分析 由题意由于新定义了对称数列,且已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2015项利用等比数列的前n项和定义直接可求①②的正确与否;对于③④⑤,先从等比数列的求和公式求出任意2m项的和,再利用减法得到需要的前2015项的和,即可判断.
解答 解:因为数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,
所以分数列的项数是偶数和奇数讨论.
1)若数列含偶数项,则数列可设为1,21,22,…,2m-1,2m-1,…,22,21,1
当m-1≥2014时,S2015=$\frac{1×(1-{2}^{2015})}{1-2}={2}^{2015}-1$故①正确,②错;
当1007≤m-1<2014时,S2015=2×$\frac{1×(1-{2}^{m})}{1-2}-\frac{1×(1-{2}^{2m-2015})}{1-2}\\;\\;\\;\\;\\;\$=2m+1-22m-2015-1,故⑤正确;
2)若数列含奇数项,则数列可设为可设为1,21,22,…,2m-2,2m-1,2m-2…,22,21,1
当m-1≥2014时,S2009=22009-1;
当1007≤m-1<2014时,所以S2015=2×$\frac{1×(1-{2}^{m-1})}{1-2}+{2}^{m-1}-\frac{1×(1-{2}^{2m-1-2019})}{1-2}$=3•2m-1-22m-2016-1;故③正确;
故答案为:①③⑤
点评 本题考查了新定义对称数列,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{8}{{e}^{2}}$,+∞) | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | (0,$\frac{4}{{e}^{2}}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com