精英家教网 > 高中数学 > 题目详情
设正方体的棱长为2 ,一个球内切于该正方体。则这个球的体积是            
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在直三棱柱中,AB=1,AC=2,,D,E分别是的中点.
(Ⅰ)证明:DE∥平面ABC;
(Ⅱ)求直线DE与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,都是边长为2的正三角形,
平面平面平面.
(1)求点到平面的距离;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,的中点,以为折痕将向上折起,使,且平面平面 
(Ⅰ)求证:
(Ⅱ)求二面角的大小;
(Ⅲ)求点C到面的距离. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图,四棱椎的底面为菱形,且平面的中点.
(1)求直线与平面所成角的正切值;
(2)在线段上是否存在一点,使成立?如果存在,求出的长;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体ABCD中,有如下命题:①若AC⊥BD,AB⊥CD,则AD⊥BC;
②若E、F、G分别是BC、AB、CD的中点,则∠FEG的大小等于异面直线AC与BD所成角的大小;
③若四面体ABCD有内切球,则
④若四个面是全等的三角形,则ABCD为正四面体。
其中正确的是:  (填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若四面体的一条棱得长为,其余各条棱得长都为,则这个四面体的体积最大时,的值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥和等腰三角形有类似的性质。在等腰三角形ABC中,AB=AC,顶点A在底边BC上的射影是D,则有结论BD=CD成立。正三棱锥P-ABC中,O是顶点P在底面ABC上的射影。结合等腰三角形的上述性质,写出一个你认为正确的结论                   ,(不写证明过程)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体的中点.
(1)请在线段上确定一点F使四点共面,并加以证明;
(2)求二面角的平面角的余弦值;
(3)点M在面内,且点M在平面上的射影恰为的重心,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案