精英家教网 > 高中数学 > 题目详情

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,EF分别是ABPD的中点.

(Ⅰ)求证:平面PCE 平面PCD
(Ⅱ)求四面体PEFC的体积.

(Ⅰ)取中点G,连接
平面平面平面平面PCE 平面PCD(Ⅱ)

解析试题分析:(Ⅰ)取中点G,连接平面



(Ⅱ)由(2)知

考点:面面垂直的判定及三棱锥体积求解
点评:在第二小题中充分利用第一小题的结论,选择合适的底面和高方便于计算

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)如图:AD=2,AB=4的长方形所在平面与正所在平面互相垂直,分别为的中点.

(1)求四棱锥-的体积;
(2)求证:平面
(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱(侧棱垂直于底面的棱柱),底面中    ,棱分别为的中点.

(1)求 >的值;
(2)求证:
(3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(本题满分12分) 如图,PA垂直于矩形ABCD所在的平面, ,E、F分别是AB、PD的中点.

(1)求证:平面PCE 平面PCD;
(2)求三棱锥P-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且

(1)求证:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在正四棱锥中,侧棱的长为所成的角的大小等于

(1)求正四棱锥的体积;
(2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)
已知是四边形所在平面外一点,四边形的菱形,侧面
为正三角形,且平面平面.
(1)若边的中点,求证:平面.
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

同步练习册答案