【题目】某单位一辆交通车载有8个职工从单位出发送他们下班回家,途中共有甲、乙、丙3个停车点.如果某停车点无人下车,那么该车在这个点就不停车.假设每个职工在每个停车点下车的可能性都是相等的,求下列事件的概率:
(1)该车在某停车点停车;
(2)停车的次数不少于2次;
(3)恰好停车2次.
【答案】(1)(2)(3)
【解析】
(1)本题是一个等可能事件的概率,试验发生包含的事件共有个,满足条件的事件是该车在某停车点停车,情况比较多,不好列举,利用对立事件来考虑,根据等可能和对立事件的概率得到结果.
(2)本题是一个等可能事件的概率,试验发生包含的事件共有个,满足条件的事件是停车的次数不少于2次,利用对立事件来考虑,即停车次数恰好是1次,得到结果.
(3)本题是一个等可能事件的概率,试验发生包含的事件共有个,满足条件的事件是恰好停车2次,包括8名职工在其中2个停车点下车,每个停车点至少有1人下车,写出结果.
解 将8个职工每一种下车的情况作为1个基本事件,那么共有(个)基本事件.
(1)记“该车在某停车点停车”为事件A,事件A发生说明在这个停车点有人下车,即至少有一人下车,这个事件包含的基本事件较复杂,于是我们考虑它的对立事件,即“8个人都不在这个停车点下车,而在另外2个点中的任一个下车”.
∵,
∴.
(2)记“停车的次数不少于2次”为事件B,则“停车次数恰好1次”为事件,则
.
(3)记“恰好停车2次”为事件C,事件C发生就是8名职工在其中2个停车点下车,每个停车点至少有1人下车,所以该事件包含的基本事件数为,于是.
科目:高中数学 来源: 题型:
【题目】已知函数,其中是自然对数的底数.
(1)当时,求曲线在处的切线方程;
(2)如果对任意,不等式恒成立,求实数的取值范围;
(3)讨论函数的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所得六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( ).
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数,,,,,满足,.
(1)若所对应点在圆上,求所对应点的轨迹;
(2)是否存在这样的直线,对应点在上,所对应点也在直线上?若存在,求出所有这些直线;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com