精英家教网 > 高中数学 > 题目详情

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别
是否
达标
合计
达标a=24 b=________________
不达标 c=________d=12________
合计________________n=50
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=数学公式
P(K2≥K)0.0500.0100.001
K3.8416.62510.828

6    30    8    20    32    18
分析:(I)成绩在[13,14)的人数有2人,设为a,b.成绩在[17,18]的人数有3人,设为A,B,C;基本事件总数为10,事件“|m-n|>2”由6个基本事件组成.根据古典概型公式可求出所求.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,即可求得.
解答:解:(Ⅰ)成绩在[13,14)的人数有:50×0.04=2人,设为a,b.
成绩在[17,18]的人数有:50×0.06=3人,
设为A,B,C.m,n∈[13,14)时有ab一种情况.
m,n∈[17,18]时有AB,AC,BC三种情况.
m,n分别在[13,14)和[17,18]时有aA,aB,aC,bA,bB,bC六种情况.
基本事件总数为10,事件“|m-n|>2”由6个基本事件组成.
所以P(|m-n|>2)=(13分)…(6分)
(Ⅱ)依据题意得相关的2×2列列联表联表如下:
性别
是否达标男女合计达标a=24b=630不达标c=8d=1220合计3218n=50…(9分)

故有99%的把握认为“体育达标与性别有关”
故可以根据男女生性别划分达标的标准…(12分)
点评:本题主要考查了独立性检验的应用、频率分布直方图,以及古典概型的概率问题、用样本的数字特征估计总体的数字特征等有关知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西山区模拟)为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别
是否
达标
合计
达标 a=24  b=
6
6
30
30
不达标  c=
8
8
d=12
20
20
合计
32
32
18
18
n=50
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥K) 0.050 0.010 0.001
K 3.841 6.625 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.
(Ⅰ)用样本估计总体,某班有学生45人,设ξ为达标人数,求ξ的数学期望与方差;
(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如表:
性别
是否达标
合计
达标 a=24 b=
6
6
30
30
不达标 c=
8
8
d=12
20
20
合计
32
32
18
18
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
P(K2≥K) 0.050 0.010 0.001
K 3.841 6.625 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年黑龙江省高三上学期期末考试理科数学试卷 题型:解答题

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图,根据有关规定,成绩小于16秒为达标.

 

 

(Ⅰ)用样本估计总体,某班有学生45人,设为达标人数,求的数学期望与方差;

性别

是否

达标

合计

达标

_____

_____

不达标

___

_____

合计

______

______

(Ⅱ)如果男女生使用相同的达标标准,则男女生达标情况如右表:

根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

附:   ,

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省海口市高三下学期高考调研考试理科数学 题型:解答题

(本小题满分12分)

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);

( II )根据有关规定,成绩小于16秒为达标.

(ⅰ)用样本估计总体,某班有学生45人,设

为达标人数,求的数学期望与方差.

    (ⅱ)如果男女生使用相同的达标标准,则男女

生达标情况如下表

性别

是否达标

合计

达标

______

_____

不达标

_____

_____

合计

______

______

 

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试文科数学 题型:解答题

本小题满分12分)

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);

(II)设表示样本中两个学生的百米测

试成绩,已知

求事件“”的概率.

(Ⅲ) 根据有关规定,成绩小于16秒为达标.

如果男女生使用相同的达标标准,则男女生达标情况如下表

性别

是否达标

合计

达标

______

_____

不达标

_____

_____

合计

______

______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

 

查看答案和解析>>

同步练习册答案