精英家教网 > 高中数学 > 题目详情

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

(Ⅰ)根据列联表运用独立性检验的思想方法能否有的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

(Ⅱ)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数的分布列和数学期望(将频率当作概率计算).

参考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式,其中.

【答案】(Ⅰ)有把握,理由见解析;(Ⅱ)分布列见解析,.

【解析】

(Ⅰ)根据题中所给的公式求出的值,然后根据参考附表进行判断即可;

(Ⅱ)由题意可以求出在全校选修生涯规划课的学生中随机抽取1名学生成绩优秀的概率,成绩不优秀的概率,可以判断可取值为0123,根据二项分布的性质进行求解即可.

(Ⅰ)由题意知,的观测值.

所以有的把握认为“学生的成绩优秀与是否选修生涯规划课有关”.

(Ⅱ)由题意知在全校选修生涯规划课的学生中随机抽取1名学生成绩优秀的概率为,成绩不优秀的概率为

可取值为0123.

所以的分布列为

0

1

2

3

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论极值点的个数;

(2)若,不等式恒成立,当为正数时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,,数列的前项和为,且有.

1)求的通项公式;

2)若,求使成立的的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,直线l过点

若直线l被圆所截得的弦长为,求直线l的方程;

若圆P是以为直径的圆,求圆P与圆的公共弦所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内两点M4,﹣2),N24).

1)求MN的垂直平分线方程;

2)直线l经过点A30),且与直线MN平行,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线上.

(1)求圆的方程;

(2)圆与圆相交于M、N两点,求两圆的公共弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 设关于的不等式的解集为,若,则实数的取值范围是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为大力提倡厉行节约,反对浪费,某市通过随机调查100名性别不同的居民是否做到光盘行动,得到如下列联表:

做不到光盘行动

做到光盘行动

45

10

30

15

经计算 附表:

参照附表,得到的正确结论是(

A.在犯错误的概率不超过的前提下,认为该市居民能否做到光盘行动与性别有关

B.在犯错误的概率不超过的前提下,认为该市居民能否做到光盘行动与性别无关

C.以上的把握认为该市居民能否做到光盘行动与性别有关

D.以上的把握认为该市居民能否做到光盘行动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,点是棱上的一个动点,平面交棱于点给出下列命题:

①存在点,使得//平面

对于任意的点平面平面

存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

其中正确命题的序号是______.(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案