精英家教网 > 高中数学 > 题目详情

过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于A,B两点,自A,B向准线作垂线,垂足分别为A′,B′,则∠A′FB′=________.

90°
分析:先由抛物线定义可知AA′=AF,可推断∠1=∠2;又根据AA′∥x轴,可知∠1=∠3,进而可得∠2=∠3,同理可求得∠4=∠6,最后根据∴∠A′FB′=∠3+∠6,则答案可得.
解答:解:如图,由抛物线定义可知AA′=AF,故∠1=∠2,
又∵AA′∥x轴,
∴∠1=∠3,从而∠2=∠3,同理可证得∠4=∠6,
而∠2+∠3+∠4+∠6=180°,
∴∠A′FB′=∠3+∠6=×180°=90°,
故答案为:90°
点评:本题主要考查抛物线的性质.要熟练掌握抛物线的定义并能灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
AF
=
FB
BA
BC
=48
,则抛物线的方程为(  )
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1),B(x2,y2),若PA与PB的斜率存在且倾斜角互补,则
y1+y2y0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个(  )
A、等边三角形B、直角三角形C、不等边锐角三角形D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线AB交抛物线于A,B两点,弦AB的中点为M,过M作AB的垂直平分线交x轴于N.
(1)求证:FN=
12
AB

(2)过A,B的抛物线的切线相交于P,求P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于M、N两点,直线OM、ON(O为坐标原点)分别与准线l:x=-
p
2
相交于P、Q两点,则∠PFQ=(  )

查看答案和解析>>

同步练习册答案