精英家教网 > 高中数学 > 题目详情
函数的图象与的图象关于直线对称,则函数的递增区间是_________.
(0,2)
∵函数的图象与的图象关于直线对称
互为反函数
的反函数为

,则,即,∴
又∵的对称轴为,且对数的底数大于1,
的递增区间为(0,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

己知函数,在处取最小值.
(1)求的值;
(2)在中,分别是的对边,已知,求角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的定义域为[-1,5],部分对应值如下表:
x
-1
0
4
5
f(x)
1
2
2
1
 
f(x)的导函数y=f′(x)的图象如图所示.

下列关于函数f(x)的命题:
①函数y=f(x)是周期函数;
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题的个数是(  )
A.4         B.3        C.2       D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上可导的函数f(x)的图像如图所示,则关于x的不等式x·f′(x)<0的解集为(  )
A.(-∞,-1)∪(0,1)
B.(-1,0)∪(1,+∞)
C.(-2,-1)∪(1,2)
D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=(  )
A.a2-2a-16
B.a2+2a-16
C.-16
D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为(0,+),的导函数,且满足,则不等式的解集是(   )
A.(0,1)B.(1,+)C.(1,2)D.(2,+)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数则满足的取值范围是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,角A,B,C所对的边长分别为abc,且满足csinA=acosC,则sinA+sinB的最大值是(  )
A.1B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程上有解,则实数的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案