精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-kx且f(x)在区间(2,+∞)上为增函数.
(1)求k的取值范围;
(2)若函数f(x)与g(x)的图象有三个不同的交点,求实数k的取值范围.
【答案】分析:(1)求出f(x)的导函数,因为f(x)在(2,+∞)上为增函数,所以得到导函数在(2,+∞)上恒大于等于0,列出k与x的不等式,由x的范围即可求出k的取值范围;
(2)把f(x)和g(x)的解析式代入h(x)中确定出h(x)的解析式,求出h(x)的导函数,令导函数等于0求出此时x的值,然后根据(1)求出的k的范围,分区间讨论导函数的正负进而得到函数的单调区间,根据函数的增减性求出函数的极小值和极大值,判断得到极小值大于0,所以要使函数f(x)与g(x)的图象有三个不同的交点,即要极大值也要大于0,列出关于k的不等式,求出不等式的解集即可得到实数k的取值范围.
解答:解:(1)由题意f′(x)=x2-(k+1)x,
因为f(x)在区间(2,+∞)上为增函数,
所以f′(x)=x2-(k+1)x≥0在(2,+∞)上恒成立,即k+1≤x恒成立,
又x>2,所以k+1≤2,故k≤1,
当k=1时,f′(x)=x2-2x=(x-1)2-1在x∈(2,+∞)恒大于0,故f(x)在(2,+∞)上单增,符合题意.
所以k的取值范围为k≤1.
(2)设
h′(x)=x2-(k+1)x+k=(x-k)(x-1),
令h′(x)=0得x=k或x=1,由(1)知k≤1,
①当k=1时,h′(x)=(x-1)2≥0,h(x)在R上递增,显然不合题意;
②当k<1时,h(x),h′(x)随x的变化情况如下表:
由于>0,欲使f(x)与g(x)图象有三个不同的交点,
即方程f(x)=g(x),也即h(x)=0有三个不同的实根.
故需即(k-1)(k2-2k-2)<0,
所以,解得
综上,所求k的范围为
点评:此题考查利用导数研究函数的单调性,利用导数研究函数的极值,考查了分类讨论的数学思想,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案