精英家教网 > 高中数学 > 题目详情

【题目】的内角ABC的对边长abc成等比数列,,延长BCD,若,则面积的最大值为(

A.2B.C.D.

【答案】B

【解析】

由两角和、差的余弦和正弦定理可得:为正三角形,设,由基本不等式得:SACD(当且仅当x2xx1时取等号)得解.

因为,所以,所以

因为abc成等比数列,所以b2ac,由正弦定理得:sin2BsinAsinC

得:

化简得:4cos2B+4cosB30,解得:cosBcosB(舍),又0Bπ,所以B

+cosAC)=1,即AC0,即AC,即三角形ABC为正三角形,

如图所示,设,则,由已知得0x2,则SACD(当且仅当x2x,即x1时取等号)

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,证明有极小值点,且

)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆的方程为,以为极点, 轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)求直线的直角坐标方程和椭圆的参数方程;

(2)设为椭圆上任意一点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将2、3、4、6、8、9、12、15共八个数排成一行,使得任意相邻两个数的最大公约数均大于1.则所有可能的排法共有()种

A. 720 B. 1014 C. 576 D. 1296

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数(0, 2π)内有两个不同零点

(1)求实数的取值范围

(2)的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育公司对最近6个月内的市场占有率进行了统计,结果如表:

(1)可用线性回归模型拟合之间的关系吗?如果能,请求出关于的线性回归方程,如果不能,请说明理由;

(2)公司决定再采购两款车扩大市场,两款车各100辆的资料如表:

平均每辆车每年可为公司带来收入500元,不考虑采购成本之外的其他成本,假设每辆车的使用寿命都是整数年,用每辆车使用寿命的频率作为概率,以每辆车产生利润的期望值作为决策依据,应选择采购哪款车型?

参考数据:

参考公式:相关系数

回归直线方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是;②从中有放回的取球6次,每次任取一球,恰好有两次白球的概率为;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为. 则其中正确命题的序号是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线与圆O:相切.

(1)直线l过点(2,1)且截圆O所得的弦长为,求直线l的方程;

(2)已知直线y=3与圆O交于A,B两点,P是圆上异于A,B的任意一点,且直线AP,BPy轴相交于M,N点.判断点M、N的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?

查看答案和解析>>

同步练习册答案