精英家教网 > 高中数学 > 题目详情
若等比数列{an}的前n项和为Sn,且S5=2,S10=6,则a16+a17+a18+a19+a20=
 
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:根据题目所给的条件可知,第六项到第十项的和是4,再与前五项的值相比,得到公比的五次方,要求的结果可以有前五项乘以公比的15次方得到.
解答: 解:∵S5=2,S10=6,
∴a6+a7+a8+a9+a10=6-2=4,
∵a1+a2+a3+a4+a5=2,
∴q5=2,
∴a16+a17+a18+a19+a20=(a1+a2+a3+a4+a5)q15=2×23=16,
故答案为:16.
点评:等比数列可以通过每隔相同个数的项取一个构造新数列,构造出一个新的等比数列数列,从而求出数列的通项公式.这类问题考查学生的灵活性,考查学生分析问题及运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a(x-1)
x+1
,a∈R.
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:函数y=log2(x2-2x)的单调增区间是[1,+∞),命题q:函数y=
1
3x+1
的值域为(0,1),下列命题是真命题的有
 

(1)?p∧q真 (2)p∧q真(3)?p∨q真(4)p∨?q真.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A=60°,BC=4,中线AD是AB、AC的等比中项,则sin∠ADC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+x2,则f′(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-mx2+5x+2013在(1,3)上只有一个极值点,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥S-ABC中,∠SBA=∠SCA=90°,△ABC是斜边AB=a的等腰直角三角形,则以下结论中:
①SB⊥AC;
②直线SB⊥平面ABC;
③平面SBC⊥平面SAC;
④点C到平面SAB的距离是
1
2
a.
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(1,0),B(1,
3
),O为坐标原点,C在第二象限,且∠AOC=60°,设
OC
=2
OA
OB
,(λ∈R),则λ等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,∠A,∠B,∠C的对边分别为a,b,c,重心为G,若2a
GA
+
3
b
GB
+3c
GC
=
0
,则cosB=
 

查看答案和解析>>

同步练习册答案