精英家教网 > 高中数学 > 题目详情

【题目】已知函数的定义域为,满足.

1)若,求的值;

2)若时,.

①求的表达式;

②若对任意,都有,求的取值范围.

【答案】10;(2)①;②

【解析】

1)根据题意,将代入表达式根据等式即可求解.

2)利用,当时,,代入表达式即可求解.

3)根据题意可得在每一段区间上,函数都有最大值点,从而可得当时,恒成立;当时,可解得两个根,数形结合即可求解.

1)由,则

解得:

2)函数的定义域为,满足

且当时,

又当时,

则有

时,

则有

时,

则有.

3)如图所示:

函数在每一段区间上,

图像为以为对称轴的抛物线的一部分,

在每一段区间上,

函数都有最大值点

时,即时,恒成立;

时,

解得,将这两个值标注在图中,

对任意,都有,必有

即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某海滨浴场海浪的高度(米是时刻,单位:时)的函数,记作:,下表是某日各时刻的浪高数据:

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

1.0

1.5

经长期观测,的曲线可近似地看成是函数的图象.

)根据以上数据,求函数的最小正周期,振幅及函数表达式;

2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的之间,那个时间段不对冲浪爱好者开放?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,经过点过点的直线l与椭圆C相交于AB两点,且与椭圆C的左准线交于点N

求椭圆C的标准方程;

时,求直线l的方程;

,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.

1求证:MN⊥CD;

2若∠PDA=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, ,则阳马的外接球的表面积是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线C的左,右焦点,O是坐标原点C的一条渐近线的垂线,垂足为P,若,则C的离心率为  

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2bxc(abcR)满足:对任意实数x,都有f(x)≥x,且当x(1,3)时,有f(x)≤ (x+2)2成立.

(1)证明:f(2)=2;

(2)f(-2)=0,求f(x)的表达式;

(3)g(x)=f(x)-xx[0,+∞),若g(x)图象上的点都位于直线y的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位决定投资元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每长造价元,两侧墙砌砖,每长造价元,

1)求该仓库面积的最大值;

2)若为了使仓库防雨,需要为仓库做屋顶.顶部每造价元,求仓库面积的最大值,并求出此时正面铁栅应设计为多长?

查看答案和解析>>

同步练习册答案