精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )

A.
B.
C.
D.

【答案】A
【解析】解:∵扇形ADE的半径为1,圆心角等于90°
∴扇形ADE的面积为S1= ×π×12=
同理可得,扇形CBF的在,面积S2=
又∵长方形ABCD的面积S=2×1=2
∴在该矩形区域内随机地选一地点,则该地点无信号的概率是
P= = =1﹣
所以答案是:1﹣
【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒中装有编号分别为的四个形状大小完全相同的小球.

(1)从盒中任取两球,求取出的球的编号之和大于的概率.

(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两个单位向量,与共面的向量满足,则的最大值为(  )

A. B. 2C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口北偏西且与该港口相距20海里的处,并以30海里/时的航行速度沿正东方向匀速行驶,假设该小船沿直线方向以海里/时的航行速度匀速行驶,经过小时与轮船相遇.

1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足 .当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2016年6月英国脱欧公投前夕,为了统计该国公民是否有留欧意愿,该国某中学数学兴趣小组随机抽查了50名不同年龄层次的公民,调查统计他们是赞成留欧还是反对留欧现已得知50人中赞成留欧的占60%,统计情况如下表:

年龄层次

赞成留欧

反对留欧

合计

18岁19岁

6

50岁及50岁以上

10

合计

50

1请补充完整上述列联表;

2请问是否有975%的把握认为赞成留欧与年龄层次有关?请说明理由

参考公式与数据:,其中

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数,函数轴上的截距我,与轴最近的最高点的坐标是

(Ⅰ)求函数的解析式;

(Ⅱ)将函数的图象向左平移)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数的图象,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某校新、老校区之间开车单程所需时间为只与道路畅通状况有关,对其容量为的样本进行统计,结果如图:

(分钟)

25

30

35

40

频数(次)

20

30

40

10

1)求的分布列与数学期望

2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是(

A.45
B.50
C.55
D.60

查看答案和解析>>

同步练习册答案