精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求φ;
(Ⅱ)求函数y=f(x)的单调区间及最值.
分析:(Ⅰ)由题意y=f(x)图象的一条对称轴是直线x=
π
8
,所以函数取得最值,结合-π<φ<0,求出φ;
(Ⅱ)结合正弦函数的单调增区间,单调减区间的范围,求出函数y=f(x)的单调区间,利用正弦函数的最值确定函数的最值.
解答:解:(Ⅰ)y=f(x)图象的一条对称轴是直线x=
π
8
,则有sin(
π
4
+?)=±1

π
4
+?=kπ+
π
2
,所以?=kπ+
π
4
,又-π<?<0,则?=-
4
(4分)
(Ⅱ)令2kπ-
π
2
<2x-
4
<2kπ+
π
2
,则kπ+
π
8
<x<kπ+
8

即单调增区间为[kπ+
π
8
,kπ+
8
](k∈Z)
(6分)
再令2kπ+
π
2
<2x-
4
<2kπ+
2
,则kπ+
8
<x<kπ+
8

即单调减区间为[kπ+
8
,kπ+
8
](k∈Z)
(8分)
2x-
4
=2kπ+
π
2
,即x=kπ+
8
时,函数取得最大值1;(10分)
2x-
4
=2kπ-
π
2
,即x=kπ+
π
8
时,函数取得最小值-1(12分)
点评:本题是基础题,考查三角函数的单调性,最值,对称性,考查计算推理能力,注意基本函数的基本知识和性质的应用,初相的范围的确定,解题的易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案