精英家教网 > 高中数学 > 题目详情
已知在公比不等于1的等比数列{an}中,a2,a8,a5成等差数列.
(1)求证:S4,S10,S7成等差数列;
(2)若a1=1,数列{|an3|}的前项和为Tn,求证:Tn<2.
考点:数列与不等式的综合,等差关系的确定,等比数列的性质
专题:等差数列与等比数列
分析:(1)由题意得S4+S7=
a1(1-q4)
1-q
+
a1(1-q7)
1-q
=
2a1(1-q10)
1-q
=2S10,由此能证明S4,S10,S7成等差数列.
(2)由已知得Tn=
1-|q3|n
1-|q3|
,从而2q6-q3-1=0,由此能证明Tn<2.
解答: (1)证明:设数列{an}的公比为q(q≠1),
由题意得 2a1q7=a1q+a1q4,(1分)
∴2q7=q+q4,即2q10=q4+q7
∴S4+S7=
a1(1-q4)
1-q
+
a1(1-q7)
1-q

=
a1(2-q4-q7)
1-q
=
a1(2-2q10)
1-q
=
2a1(1-q10)
1-q
=2S10.(5分)
∴S4,S10,S7成等差数列.(6分)
(2)证明:依题意得数列{|an3|}是首项为1,公比为|q3|的等比数列,
∴Tn=
1-|q3|n
1-|q3|
.(7分)
又由(Ⅰ)得2q7=q+q4,∴2q6-q3-1=0,(8分)
解得q3=1(舍去),q3=-
1
2
.(10分)
∴Tn=
1-|-
1
2
|n
1-|-
1
2
|
=2[1-(
1
2
n]<2.(12分)
点评:本题考查等差数列的证明,考查不等式的证明,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
4x-16
x-3
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线3x+4y-9=0与圆x2+(y-1)2=1的位置关系是(  )
A、相离
B、相切
C、直线与圆相交且过圆心
D、直线与圆相交但不过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中A(-8,2),AB边上中线CE所在直线的方程为x+2y-5=0,AC边上的中线BD所在直线的方程为2x-5y+8=0,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

点(2,3,4)关于yoz平面的对称点为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
2(2n+1)
3n+1
-
2(2n-1)
3n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
n
a1+a2+…+an
=
1
2n+1

(1)设Sn是数列{an}的前n项和,求an与Sn
(2)若bn=
16
(an+1)(an+5)
,设函数f(x)=x+
1
2
-
n
i-1
bi,是否存在最大的实数λ,当x≤λ时,对一切n∈N*都有f(x)≤0成立?若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn=n2,则a9的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A(-2,-1),B(x,2),C(1,0)共线,则x为(  )
A、7B、-5C、3D、-1

查看答案和解析>>

同步练习册答案