精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=xsinθ+cosθ,其中θ∈[0,2π).
(Ⅰ)若f(x)在(-∞,+∞)为减函数,求θ的取值范围;
(Ⅱ)若函数f(x)为奇函数,求lnf(sinθ)的值.

分析 (Ⅰ)根据函数的单调性的定义和三角函数图象和性质即可求出;
(2)先根据函数为奇函数,求出θ的值,再求出答案即可.

解答 解:(Ⅰ)设x1,x2∈(-∞,+∞),且x1<x2
∴f(x1)-f(x2)=x1sinθ+cosθ-x2sinθ-cosθ=(x1-x2)sinθ,
∵f(x)在(-∞,+∞)为减函数,x1<x2
∴f(x1)-f(x2)>0,
∴(x1-x2)sinθ>0,
∴sinθ<0,
∵θ∈[0,2π),
∴θ∈(π,2π);
(Ⅱ)∵函数f(x)为奇函数,
∴f(-x)=-xsinθ+cosθ=-f(x)=-xsinθ-cosθ,
∴cosθ=0,
∵θ∈[0,2π),
∴θ=$\frac{π}{2}$,或θ=$\frac{3π}{2}$,
∴sinθ=1,或sinθ=-1,
当θ=$\frac{π}{2}$时,f(x)=x,则f(1)=1,则lnf(sinθ)=0,
当θ=$\frac{3π}{2}$时,f(x)=-x,则f(-1)=1,则lnf(sinθ)=0,
综上所述,lnf(sinθ)=0.

点评 本题考查了以三角函数为载体考查了函数的单调性和奇偶性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知${C}_{n}^{5}$=${C}_{n}^{6}$,求${C}_{n+3}^{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.与直线3x-4y-2=0平行且距离为2的直线方程为3x-4y-12=0或3x-4y+8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若直线l:y=x+b,曲线C:y=$\sqrt{1-{x}^{2}}$.它们有两个不同的公共点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.北京时间2015年07月31日17时57分,在马来西亚首都吉隆坡举行的国际奥委会第128次全会上,国际奥委会主席托马斯.巴赫宣布北京赢得2022年第二十四届冬季奥林匹克运动会(以下简称冬奥会)的举办权,华夏大地一片欢腾,某高中为了调查学生对冬奥会的了解惰况,组织了“冬奥会知多少”的知识问卷测试,从该校2400名学生中随机抽取12人进行知识问卷测试,测试成绩(百分制)以茎叶图形式表示(如图所示),根据主办方标准,测试成绩低于80分的为“非体育迷”,不低于80分的为“体育迷”,
(1)将频率视为概率,根据样本估计总体的思想,若从该校学生中任选4人进行深度访谈,求恰好有1人是“体育迷”的概率;
(2)从抽取的12名学生中随机选取3人,记ξ表示“体育迷”的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.把函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)的图象向右平移φ(φ>0)个单位,所的函数图象关于y轴对称,则φ的最小值为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.北纬45°圈上有A,B两地,A在东经120°,B在西经150°,设地球的半径为R,则A、B两地的球面距离是$\frac{πR}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知以直线y=±kx(k>0)为渐近线的双曲线$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$(a>0,b>0)的离心率为e,且$\frac{1}{k}$和e是方程${x}^{2}+mx+\sqrt{6}=0$的两个根,则该双曲线的渐近线方程为(  )
A.$y=±\frac{\sqrt{2}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.y=$±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列命题:
(1)若数列{an}存在极限,则该极限唯一;
(2)若直线l的倾斜角为α,则l的斜率存在且为tanα;
(3)设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为α,若$\overrightarrow{a}$•$\overrightarrow{b}$>0,则α为锐角;
(4)到x轴、y轴距离相等的点的轨迹方程为x2-y2=0.
其中所有正确命题的序号为(  )
A.(1)(2)B.(2)(3)C.(1)(4)D.(2)(4)

查看答案和解析>>

同步练习册答案