精英家教网 > 高中数学 > 题目详情

已知椭圆G:过点,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.

(1),(2)

解析试题分析:(1)求椭圆方程一般方法为待定系数法,将A,B两点坐标代入椭圆方程,联立方程组解得:,(2)四边形可分割成三个三角形,即,其中三角形OAB面积确定,OC=OD,因此可用直线CD斜率表示高及底:设直线CD方程为y = kx,代入椭圆方程,解得:,又,则
试题解析:解:(1)将点A(0,5),B(-8,-3)代入椭圆G 的方程解得
(2)连结OB,

其中,分别表示点A,点B 到直线CD 的距离.
设直线CD方程为y = kx,代入椭圆方程
解得:



考点:椭圆方程,直线与椭圆位置关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线方程为,过点作直线与抛物线交于两点,,过分别作抛物线的切线,两切线的交点为.
(1)求的值;
(2)求点的纵坐标;
(3)求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线的参数方程为为参数,).
(1)写出直线的直角坐标方程;
(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线E上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.
(1)求曲线E的方程;
(2)设过点(0,-2)的直线l与曲线E交于C、D两点,且·=0(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.

(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知抛物线y2=4x的焦点为F,准线为l.过点F作倾斜角为60°的直线与抛物线在第一象限的交点为A,过A作l的垂线,垂足为A1,则△AA1F的面积是     

查看答案和解析>>

同步练习册答案