精英家教网 > 高中数学 > 题目详情
设a为实常数,函数f(x)=-x3+ax2-2.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求a的值;
(2)在(1)的条件下,求函数f(x)在区间[-1,2]上的最值.
【答案】分析:(1)先求出函数f(x)的导函数,然后根据函数f(x)在点(1,f(1))处的切线的斜率等于1,建立关于a的方程,解之即可;
(2)先求出f′(x)=0,再讨论满足f′(x)=0的点附近的导数的符号的变化情况,得到函数的单调性,进而来确定极值点,通过比较极值与端点的大小从而确定出最值.
解答:解:(1)∵f(x)=-x3+ax2-2
∴f'(x)=-3x2+2ax

∴a=2
(2)由(1)得:f(x)=-x3+2x2-2,
∴f'(x)=-3x2+4x=-3x(x-),
令f'(x)<0,并且函数的定义域为:[-1,2]
所以

∴f(x)在[-1,2]的最小值为f(0)=f(2)=-2,最大值为f(-1)=1.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数求闭区间上函数的最值,导数高考新增内容,是常考的知识点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实常数,函数f(x)=-x3+ax2-4.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4
,求函数f(x)的单调区间;
(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实常数,函数f(x)=-x3+ax2-2.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4
,求a的值;
(2)在(1)的条件下,求函数f(x)在区间[-1,2]上的最值.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

设a为实常数,函数f(x)=-x3+ax2-4.

(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求函数f(x)的单调区间;

(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011年《金版新学案》高三数学(文科)一轮复习测评卷:章末质量检测11(解析版) 题型:解答题

设a为实常数,函数f(x)=-x3+ax2-4.
(1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求函数f(x)的单调区间;
(2)若存在x∈(0,+∞),使f(x)>0,求a的取值范围.

查看答案和解析>>

同步练习册答案