精英家教网 > 高中数学 > 题目详情
已知向量
p
q
满足条件:|
p
|=2
2
,|
q
|=3
p
q
的夹角为
π
4
,如图,若
AB
=5
p
+2
q
AC
=
p
-3
q
,且D为BC的中点,则
AD
的长度为(  )
分析:根据向量的加法法则得2
AD
=
AB
+
AC
,结合题意得出
AD
=3
p
-
1
2
q
.由数量积的公式算出
p
q
=6,结合数量积的运算性质算出
AD
2=(3
p
-
1
2
q
2=
225
4
,从而可得
AD
的长度.
解答:解:∵
AB
=5
p
+2
q
AC
=
p
-3
q

∴根据向量加法的平行四边形法则,可得2
AD
=
AB
+
AC
=6
p
-
q

AD
=3
p
-
1
2
q

|
p
|=2
2
,|
q
|=3
p
q
的夹角为
π
4

p
2
=|
p
|2=8
q
2
=|
q
|2=9
p
q
=
|p|
|q|
cos
π
4
=6
由此可得
AD
2=(3
p
-
1
2
q
2=9
p
2
-3
p
q
+
1
4
q
2
=9×8-3×6+
9
4
=
225
4

|AD|
=
AD
2
=
15
2
(舍负),即
AD
的长度为
15
2

故选:A
点评:本题着重考查了向量的加法法则、向量的数量积运算公式及其性质、向量模的公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网与向量、圆交汇.例5:已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省连云港市新海高级中学高三(下)3月调研数学试卷(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高中数学综合测试卷(选修1-1)(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年广东省揭阳市普宁市华美实验学校高考数学三模试卷(理科)(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:巧妙交汇 精彩纷呈(解析版) 题型:解答题

与向量、圆交汇.例5:已知F1、F2分别为椭圆C1的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且
(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:,(λ≠0且λ≠±1).问点Q是否总在某一定直线上?若在,求出这条直线,否则,说明理由.

查看答案和解析>>

同步练习册答案