精英家教网 > 高中数学 > 题目详情
已知向量
a
=(
3
2
,-
1
2
),
b
=(sinα,cosα)且当α∈R时,|2
a
-
b
|
的最大、最小值分别为m、n,则m-n=
2
2
2
2
分析:由两向量的坐标确定出2
a
-
b
,表示出模的平方,利用完全平方公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域确定出模的最大值与最小值,即可求出m-n的值.
解答:解:∵
a
=(
3
2
,-
1
2
),
b
=(sinα,cosα),
∴2
a
-
b
=(
3
-sinα,-1-cosα),
∴|2
a
-
b
|2=(
3
-sinα)2+(-1-cosα)2=3-2
3
sinα+sin2α+1+2cosα+cos2α=4-4(
3
2
sinα-
1
2
cosα)=4-4sin(α-
π
6
),
∵-1≤sin(α-
π
6
)≤1,即-4≤-4sin(α-
π
6
)≤4,
∴0≤4-4sin(α-
π
6
)≤8,
∴|2
a
-
b
|最大值m=2
2
,最小值n=0,
则m-n=2
2

故答案为:2
2
点评:此题考查了两角和与差的正弦函数公式,向量的模,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,-
3
2
),
b
=(
3
2
,λ)
,若
a
b
,则λ的值为(  )
A、-2
B、-
1
2
C、-
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,1),
b
=(
3
2
3
4
)
,设
a
b
的夹角为θ,则cosθ=
4
3
7
4
3
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,-
3
2
)
b
=(
3
2
,λ)
,若
a
b
,则实数λ的值为_
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
2
,-
1
2
)
b
=(1,
3
)

(Ⅰ)求证
a
b

(Ⅱ)如果对任意的s∈R+,使
m
=
a
+(1+2s)
b
n
=-k
a
+(1+
1
s
)
b
垂直,求实数k的最小值.

查看答案和解析>>

同步练习册答案