【题目】已知椭圆的离心率为,过焦点且垂直于轴的直线被椭圆所截得的弦长为.
(1)求椭圆的标准方程;
(2)若经过点的直线与椭圆交于不同的两点是坐标原点,求的取值范围.
【答案】(1)(2)
【解析】
(1)根据离心率以及弦长,结合,可知,可得结果.
(2)假设点坐标,根据斜率存在与否假设直线方程,并与椭圆方程联立,使用韦达定理,表示出,结合不等式,可得结果.
解:(1)设椭圆的半焦距为.
因为过焦点且垂直于轴的直线交椭圆
所得的弦长为,所以,
得①因为椭圆的离心率为,
所以②
又③
由①②③,解得.
故椭圆的标准方程是.
(2)当直线的斜率不存在时,
直线的方程为,联立
解得或
则点的坐标分别为
,或,.
所以
;
当直线的斜率存在时,
设直线的方程为.
联立消去
得,
因为点在椭圆的内部,
所以直线与椭圆一定有两个不同的交点.
则.
所以
化简可得
则
化简可得.
因为,所以,
所以,所以.
所以,
即,所以.
综上,的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-+3x0)成立.试比较ea-1与ae-1的大小,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.在频率分布直方图中,众数左边和右边的直方图的面积相等;
B.为调查高三年级的240名学生完成作业所需的时间,由教务处对高三年级的学生进行編号,从001到240抽取学号最后一位为3的学生进行调查,则这种抽样方法为分层抽样;
C.“”是“”的必要不充分条件;
D.命题:“,使得”的否定为:“,均有”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月18日,国务院办公厅发布了《生活垃圾分类制度实施方案》,我市环保部门组织了一次垃圾分类知识的网络问卷调查,每位市民都可以通过电脑网络或手机微信平台参与,但仅有一次参加机会工作人员通过随机抽样,得到参与网络问卷调查的100人的得分(满分按100分计)数据,统计结果如下表.
组别 | ||||||
女 | 2 | 4 | 4 | 15 | 21 | 9 |
男 | 1 | 4 | 10 | 10 | 12 | 8 |
(1)环保部门规定:问卷得分不低于70分的市民被称为“环保关注者”.请列出列联表,并判断能否在犯错误的概率不超过的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.现在从本次调查的“环保达人”中利用分层抽样的方法随机抽取5名市民参与环保知识问答,再从这5名市民中抽取2人参与座谈会,求抽取的2名市民中,既有男“环保达人”又有女“环保达人”的概率.
附表及公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,点M为A1C1的中点,点N为AB1上一动点.若点N为AB1的中点且CM⊥MN,求二面角MCNA的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2013年以来,“一带一路”建设成果显著.下图是2013-2017年,我国对“一带一路”沿线国家进出口情况统计图.下列描述错误的是( )
A.这五年,2013年出口额最少
B.这五年,出口总额比进口总额多
C.这五年,出口增速前四年逐年下降
D.这五年,2017年进口增速最快
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.
数据:
13 | 15 | 19 | 20 | 21 | |
26 | 28 | 30 | 18 | 36 |
(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程;
(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?
附:,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com