精英家教网 > 高中数学 > 题目详情

【题目】某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为.

1)求在任意时刻至少有一个系统不发生故障的概率;

2)设系统3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望.(用数字作答)

【答案】1.(2)分布列答案见解析,数学学期望:

【解析】

1)考虑求“至少有一个系统不发生故障”的反面为“两个系统都发生故障”的概率,然后用“1”减,即得结果;

2)分别求出0123时候的概率,列出分布列,由期望公式,求出数学期望即可.

1)由题意,系统在任意时刻都发生故障的概率为:

所以在任意时刻,至少有一个系统不发生故障的概率.

2的可能取值为0123.

的分布列为

0

1

2

3

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=e2x﹣ax2+1[1,2]上是减函数,则实数a的取值范围是(  )

A. [,+∞) B. ,+∞) C. [,+∞) D. ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《五曹算经》是我国南北朝时期数学家甄鸾为各级政府的行政人员编撰的一部实用算术书.其第四卷第九题如下:“今有平地聚粟,下周三丈高四尺,问粟几何?”其意思为“场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的体积约为1.62立方尺,圆周率约为3,估算出堆放的稻谷约有(

A.57.08B.171.24C.61.73D.185.19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,m∈R.

(1)若m=3,求A∩B;

(2)已知命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红队队员甲、乙、丙与蓝队队员ABC进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,假设各盘比赛结果相互独立.

I)求红队至少两名队员获胜的概率;

II)用表示红队队员获胜的总盘数,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:关于x的方程无解,q

1)若时,“”为真命题,“”为假命题,求实数a的取值范围.

2)当命题“若p,则q”为真命题,“若q,则p”为假命题时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为( )

A.(﹣1,0)∪(1,+∞)B.(﹣1,0)∪(0,1)

C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

同步练习册答案