精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn=2n2 , {bn}为等比数列,且a1=b1 , b2(a2﹣a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn= ,求数列{cn}的前n项和Tn

【答案】
(1)解:当n=1时,a1=S1=2;当n≥2时,an=Sn﹣Sn1=2n2﹣2(n﹣1)2=4n﹣2,

故{an}的通项公式为an=4n﹣2,即{an}是a1=2,公差d=4的等差数列.

设{bn}的公比为q,则b1qd=b1,d=4,∴q=

故bn=b1qn1=2× ,即{bn}的通项公式为bn=


(2)解:∵cn= = =(2n﹣1)4n1

Tn=c1+c2+…+cn

Tn=1+3×41+5×42+…+(2n﹣1)4n1

4Tn=1×4+3×42+5×43+…+(2n﹣3)4n1+(2n﹣1)4n

两式相减得,3Tn=﹣1﹣2(41+42+43+…+4n1)+(2n﹣1)4n= [(6n﹣5)4n+5]

∴Tn= [(6n﹣5)4n+5]


【解析】(1)由已知利用递推公式 可得an , 代入分别可求数列bn的首项b1 , 公比q,从而可求bn(2)由(1)可得cn=(2n﹣1)4n1 , 利用乘“公比”错位相减求和.
【考点精析】认真审题,首先需要了解等差数列的通项公式(及其变式)(通项公式:),还要掌握数列的前n项和(数列{an}的前n项和sn与通项an的关系)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等比数列中, ,且的等比中项为.

1)求数列的通项公式;

2)设,数列的前项和为,是否存在正整数,使得对任意恒成立?若存在,求出正整数的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函数f(x)的定义域为 ,求单调递减区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8

(参考公式: = =

(1)在给出的坐标系中,画出关于x,y两个相关变量的散点图.
(2)请根据上表提供的数据,用最小二乘法求出变量y关于变量x的线性回归直线方程
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上的最大值为,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的椭圆的标准方程:

(1)(0,5)(0,-5)为焦点,且椭圆上一点P到两焦点的距离之和为26

(2)以椭圆9x25y245的焦点为焦点,且经过M(2 )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=sin2x+2cosx( )的最大值与最小值分别为(
A.最大值 ,最小值为﹣
B.最大值为 ,最小值为﹣2
C.最大值为2,最小值为﹣
D.最大值为2,最小值为﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,平面平面,四边形为菱形,且 中点.

(Ⅰ)求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在棱上是否存在点,使 ? 若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案