精英家教网 > 高中数学 > 题目详情
14.已知tanα=3,计算:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(2)1-4sinαcosα+2cos2α.

分析 (1)分子、分母同除以cosα,化为tanα,计算即可;
(2)利用1=sin2α+cos2α,分母为1,化弦为切计算即可.

解答 解:(1)tanα=3,
∴$\frac{4sinα-2cosα}{5cosα+3sinα}$
=$\frac{4tanα-2}{5+3tanα}$
=$\frac{4×3-2}{5+3×3}$
=$\frac{5}{7}$;
(2)1-4sinαcosα+2cos2α
=$\frac{{sin}^{2}α{+cos}^{2}α-4sinαcosα+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{{tan}^{2}α-4tanα+3}{{tan}^{2}α+1}$
=$\frac{{3}^{2}-4×3+3}{{3}^{2}+1}$
=0.

点评 本题考查了1=sin2α+cos2α以及化弦为切的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ex,g(x)=-x2+2x+a,a∈R.
(Ⅰ)讨论函数h(x)=f(x)g(x)的单调性;
(Ⅱ)记φ(x)=$\left\{\begin{array}{l}f(x),x<0\\ g(x),x>0\end{array}$,设A(x1,φ(x1)),B(x2,φ(x2))为函数φ(x)图象上的两点,且x1<x2
(ⅰ)当x>0时,若φ(x)在A,B处的切线相互垂直,求证x2-x1≥1;
(ⅱ)若在点A,B处的切线重合,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要从160名学生中抽取容量为20的样本,用系统抽样法将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按抽签方法确定的号码是(  )
A.7B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>0且a≠1函数f(x)=ax+x2-xlna-a
(1)当a=e时,求函数f(x)的单调区间;(其中e为自然对数的底数)
(2)求函数f(x)的最小值;
(3)指出函数f(x)的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知tanα=2,求下列各式的值:
(1)$\frac{sinα-3cosα}{sinα+cosα}$;
(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z=$\frac{1+3i}{3-i}$,则z的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{5},x∈[-1,1]}\\{x,x∈[1,π)}\\{sinx,x∈[π,3π]}\end{array}\right.$求f(x)在区间[-1,3π]上的定积分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知m∈R,复数z=(m2+5m+6)+(m2-2m-15)i.
(1)若z与复数2-12i相等,求m的值;
(2)若z与复数12+16i互为共轭复数,求m的值;
(3)若z对应的点在x轴上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{3π}{4}$.

查看答案和解析>>

同步练习册答案