精英家教网 > 高中数学 > 题目详情

【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

【答案】(1)15(百米);

(2)见解析;

(3)17+(百米).

【解析】

解:解法一:

1)过A,垂足为E.利用几何关系即可求得道路PB的长;

2)分类讨论PQ中能否有一个点选在D处即可.

3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,PQ两点间的距离.

解法二:

1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB的长;

2)分类讨论PQ中能否有一个点选在D处即可.

3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,PQ两点间的距离.

解法一:

1)过A,垂足为E.

由已知条件得,四边形ACDE为矩形,.

因为PBAB

所以.

所以.

因此道路PB的长为15(百米).

2)①若PD处,由(1)可得E在圆上,则线段BE上的点(除BE)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.

②若QD处,连结AD,由(1)知

从而,所以∠BAD为锐角.

所以线段AD上存在点到点O的距离小于圆O的半径.

因此,Q选在D处也不满足规划要求.

综上,PQ均不能选在D.

3)先讨论点P的位置.

当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;

当∠OBP≥90°时,对线段PB上任意一点FOFOB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.

l上一点,且,由(1)知,

此时

当∠OBP>90°时,在中,.

由上可知,d≥15.

再讨论点Q的位置.

由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.

综上,当PBAB,点Q位于点C右侧,且CQ=时,d最小,此时PQ两点间的距离PQ=PD+CD+CQ=17+.

因此,d最小时,PQ两点间的距离为17+(百米).

解法二:

1)如图,过OOHl,垂足为H.

O为坐标原点,直线OHy轴,建立平面直角坐标系.

因为BD=12AC=6,所以OH=9,直线l的方程为y=9,点AB的纵坐标分别为33.

因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.

从而A43),B43),直线AB的斜率为.

因为PBAB,所以直线PB的斜率为

直线PB的方程为.

所以P139),.

因此道路PB的长为15(百米).

2)①若PD处,取线段BD上一点E40),则EO=4<5,所以P选在D处不满足规划要求.

②若QD处,连结AD,由(1)知D49),又A43),

所以线段AD.

在线段AD上取点M3),因为

所以线段AD上存在点到点O的距离小于圆O的半径.

因此Q选在D处也不满足规划要求.

综上,PQ均不能选在D.

3)先讨论点P的位置.

当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;

当∠OBP≥90°时,对线段PB上任意一点FOFOB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.

l上一点,且,由(1)知,,此时

当∠OBP>90°时,在中,.

由上可知,d≥15.

再讨论点Q的位置.

由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.

QA=15时,设Qa9),由

a=,所以Q9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.

综上,当P139),Q9)时,d最小,此时PQ两点间的距离

.

因此,d最小时,PQ两点间的距离为(百米).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种质地均匀的正四面体玩具的4个面上分别标有数字0123,将这个玩具抛掷次,记第次抛掷后玩具与桌面接触的面上所标的数字为,数列的前和为.记3的倍数的概率为

1)求

2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

频数

6

24

(Ⅰ)求 的值;

(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈.现再从这10人这任选4人,记所选4人的量化总分为,求的分布列及数学期望

(Ⅲ)某评估机构以指标,其中表示的方差)来评估该校安全教育活动的成效.若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点C在以AB为直径的圆上运动,PA⊥平面ABC,且PAACDE分别是PCPB的中点.

1)求证:PC⊥平面ADE

2)若二面角CAEB60°,求直线AB与平面ADE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆 相切,且与圆 相内切,记圆心的轨迹为曲线.设为曲线上的一个不在轴上的动点, 为坐标原点,过点的平行线交曲线, 两个不同的点.

(Ⅰ)求曲线的方程;

(Ⅱ)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;

(Ⅲ)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园内有一块矩形绿地区域ABCD,已知AB=100米,BC=80米,以AD,BC为直径的两个半圆内种植花草,其它区域种值苗木. 现决定在绿地区域内修建由直路BN,MN和弧形路MD三部分组成的观赏道路,其中直路MN与绿地区域边界AB平行,直路为水泥路面,其工程造价为每米2a元,弧形路为鹅卵石路面,其工程造价为每米3a元,修建的总造价为W元. 设.

(1)求W关于的函数关系式;

(2)如何修建道路,可使修建的总造价最少?并求最少总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在南北方向有一条公路,一半径为100的圆形广场(圆心为)与此公路所在直线相切于点,点为北半圆弧(弧)上的一点,过点作直线的垂线,垂足为,计划在内(图中阴影部分)进行绿化,设的面积为(单位:),

1)设,将表示为的函数;

2)确定点的位置,使绿化面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所开发了一种新药,测得成人注射该药后血药浓度y(微克/毫升)与给药时间x(小时)之间的若干组数据,并由此得出yx之间的一个拟合函数y400.6x0.62x)(x[012]),其简图如图所示.试根据此拟合函数解决下列问题:

1)求药峰浓度与药峰时间(精确到0.01小时),并指出血药浓度随时间的变化趋势;

2)求血药浓度的半衰期(血药浓度从药峰浓度降到其一半所需要的时间)(精确到0.01小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数,),以坐标原点为极点,以轴的 非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案